Publications by authors named "Bernadette Scutella"

New drying technologies for biologicals have recently been developed to accelerate the time-consuming batch freeze-drying (BFD) process. Among others, microwave-assisted freeze-drying (MFD) has been suggested as a faster and more effective drying technology. In this study, MFD cycles with the microwave radiation switched on and off were performed to assess the contribution of the microwave radiation to drying acceleration.

View Article and Find Full Text PDF

Freeze-drying is commonly used to increase the shelf-life of pharmaceuticals and biopharmaceuticals. Freezing represents a crucial phase in the freeze-drying process, as it determines both cycle efficiency and product quality. For this reason, different strategies have been developed to allow for a better control of freezing, among them, the so-called vacuum-induced surface freezing (VISF), which makes it possible to trigger nucleation at the same time in all the vials being processed.

View Article and Find Full Text PDF

Chemical, manufacturing, and control development timelines occupy a significant part of vaccine end-to-end development. In the on-going race for accelerating timelines, in silico process development constitutes a viable strategy that can be achieved through an artificial intelligence (AI)-driven or a mechanistically oriented approach. In this opinion, we focus on the mechanistic option and report on the modeling competencies required to achieve it.

View Article and Find Full Text PDF

Specific devices that combine 96-well plates and high-throughput vials were recently proposed to improve the efficiency of formulation screening. Such devices make it possible to increase the number of formulations tested while reducing the amount of active ingredients needed. The geometry of the product container influences the heat and mass transfer during freeze-drying, impacting product temperature (T_{p}) and therefore affecting the final product quality.

View Article and Find Full Text PDF

Freeze-drying is a dehydration process that provides improved stability of vaccine formulations for shipment and storage. During the primary drying steps of the process, product temperature has to be maintained below a critical value to avoid visual defects of the product, leading to an increase of the sublimation time and thus of the operational costs. In this work, we used the design space approach together with experimental analysis for the development of the primary drying step of a vaccine model formulation.

View Article and Find Full Text PDF

During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation.

View Article and Find Full Text PDF

During the freeze-drying process, vials located at the border of the shelf usually present higher heat flow rates that result in higher product temperatures than vials in the center. This phenomenon, referred to as edge vial effect, can lead to product quality variability within the same batch of vials and between batches at different scales. Our objective was to investigate the effect of various freeze dryer design features on heat transfer variability.

View Article and Find Full Text PDF

Vial design features can play a significant role in heat transfer between the shelf and the product and, consequently, in the final quality of the freeze-dried product. Our objective was to investigate the impact of the variability of some geometrical dimensions of a set of tubing vials commonly used for pharmaceuticals production on the distribution of the vial heat transfer coefficients (K) and its potential consequence on product temperature. Sublimation tests were carried out using pure water and 8 combinations of chamber pressure (4-50 Pa) and shelf temperature (-40°C and 0°C) in 2 freeze-dryers.

View Article and Find Full Text PDF