Subclinical neck pain (SCNP) is a subset of the recurrent neck pain population for which individuals have not received treatment. Individuals with SCNP have been shown to have altered cerebellar processing. The cerebellum integrates sensorimotor information to refine and update internal models necessary for reaching movements.
View Article and Find Full Text PDFBackground/objectives: Sensorimotor dysfunction is often reported in individuals experiencing neck pain, irrespective of severity and chronicity. The treatment of neck dysfunction has been found to positively impact sensorimotor integration (SMI), thereby improving sensorimotor function. However, no patient-reported outcome measure has been validated for discrimination between healthy individuals and neck pain patients with disordered SMI, nor has there been documentation of positive change in SMI following neck pain treatment.
View Article and Find Full Text PDFArtificial Intelligence (AI), computer simulations, and virtual reality (VR) are increasingly becoming accessible tools that can be leveraged to implement training protocols and educational resources. Typical assessment tools related to sensory and neural processing associated with task performance in virtual environments often rely on self-reported surveys, unlike electroencephalography (EEG), which is often used to compare the effects of different types of sensory feedback (e.g.
View Article and Find Full Text PDFIndividuals with subclinical neck pain (SCNP) exhibit altered cerebellar processing, likely due to disordered sensorimotor integration of inaccurate proprioceptive input. This association between proprioceptive feedback and SMI has been captured in cervico-ocular reflex (COR) differences where SCNP showed higher gain than healthy participants. Previous neurophysiological research demonstrated improved cerebellar processing in SCNP participants following a single treatment session, but it is unknown whether these neurophysiological changes transfer to cerebellar function.
View Article and Find Full Text PDFFor the purpose of testing shoulder joint proprioception while controlling for axioscapular muscle recruitment, a novel shoulder thoracohumeral (TH) rotation joint position sense (JPS) measurement device was designed. This device was intended to measure shoulder TH rotation, while also implicitly constraining other upper limb degrees of freedom (DOF) and minimizing cutaneous sensation. The purpose of this study was to determine whether joint motion aside from shoulder TH rotation is being captured by the shoulder JPS measurement device.
View Article and Find Full Text PDFBoth chronic and recurrent spinal pain alter sensorimotor integration (SMI), which is demonstrated using complex neurophysiological techniques. Currently, there is no patient-reported outcome measure that documents and/or assesses SMI in populations with spinal problems. The purpose of this study was to develop the Sensory-Motor Dysfunction Questionnaire (SMD-Q) and assess its test-retest reliability and internal consistency in individuals with recurrent spinal pain.
View Article and Find Full Text PDFIndividuals with untreated, mild-to-moderate recurrent neck pain or stiffness (subclinical neck pain (SCNP)) have been shown to have impairments in upper limb proprioception, and altered cerebellar processing. It is probable that aiming trajectories will be impacted since individuals with SCNP cannot rely on accurate proprioceptive feedback or feedforward processing (body schema) for movement planning and execution, due to altered afferent input from the neck. SCNP participants may thus rely more on visual feedback, to accommodate for impaired cerebellar processing.
View Article and Find Full Text PDFVirtual reality (VR) enables the development of virtual training frameworks suitable for various domains, especially when real-world conditions may be hazardous or impossible to replicate because of unique additional resources (e.g., equipment, infrastructure, people, locations).
View Article and Find Full Text PDFBackground: Neural adaptions in response to sensorimotor tasks are impaired in those with untreated, recurrent mild-to-moderate neck pain (subclinical neck pain (SCNP)), due to disordered central processing of afferent information (e.g., proprioception).
View Article and Find Full Text PDFObjectives: The purpose of this study was to determine effect sizes (ES) for changes in self-reported measures of musculoskeletal pain and dysfunction resulting from the one-to-zero method using a repeated measures study design.
Methods: Twenty participants presenting with articular dysfunction of the occipito-atlantal (C0-C1) complex were treated using the one-to-zero method, a high-velocity low-amplitude thrust administered between the C0-C1 complex before treating other restrictive segments in a cephalocaudal direction. The participants completed online questionnaires using Google Forms that assessed aspects of the biopsychosocial model of pain at baseline and within a week after treatment.
Alterations in neck sensory input from recurrent neck pain (known as subclinical neck pain (SCNP)) result in disordered sensorimotor integration (SMI). The cervico-ocular (COR) and vestibulo-ocular (VOR) reflexes involve various neural substrates but are coordinated by the cerebellum and reliant upon proprioceptive feedback. Given that proprioception and cerebellar processing are impaired in SCNP, we sought to determine if COR or VOR gain is also altered.
View Article and Find Full Text PDFExperimentally induced neck fatigue and neck pain have been shown to impact cortico-cerebellar processing and sensorimotor integration, assessed using a motor learning paradigm. Vibration specifically impacts muscle spindle feedback, yet it is unknown whether transient alterations in neck sensory input from vibration impact these neural processing changes following the acquisition of a proprioceptive-based task. Twenty-five right-handed participants had electrical stimulation over the right median nerve to elicit short- and middle-latency somatosensory evoked potentials (SEPs) pre- and post-acquisition of a force matching tracking task.
View Article and Find Full Text PDFAttention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, where differences are often present relating to the performance of motor skills. Our previous work elucidated unique event-related potential patterns of neural activity in those with ADHD when performing visuomotor and force-matching motor paradigms. The purpose of the current study was to identify whether there were unique neural sources related to somatosensory function and motor performance in those with ADHD.
View Article and Find Full Text PDFIntroduction: Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioral characteristics. Those with ADHD often have noted impairments in motor performance and coordination, including during tasks that require force modulation. The present study provides insight into the role of altered neural processing and SMI in response to a motor learning paradigm requiring force modulation and proprioception, that previous literature has suggested to be altered in those with ADHD, which can also inform our understanding of the neurophysiology underlying sensorimotor integration (SMI) in the general population.
View Article and Find Full Text PDFAttention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that has noted alterations to motor performance and coordination, potentially affecting learning processes and the acquisition of motor skills. This work will provide insight into the role of altered neural processing and sensorimotor integration (SMI) while learning a novel visuomotor task in young adults with ADHD. This work compared adults with ADHD ( = 12) to neurotypical controls ( = 16), using a novel visuomotor tracing task, where participants used their right-thumb to trace a sinusoidal waveform that varied in both frequency and amplitude.
View Article and Find Full Text PDFUpper limb control depends on accurate internal models of limb position relative to the head and neck, accurate sensory inputs, and accurate cortical processing. Transient alterations in neck afferent feedback induced by muscle vibration may impact upper limb proprioception. This research aimed to determine the effects of neck muscle vibration on upper limb proprioception using a novel elbow repositioning task (ERT).
View Article and Find Full Text PDFForce modulation relies on accurate proprioception, and force-matching tasks alter corticocerebellar connectivity. Corticocerebellar (N24) and corticomotor pathways are impacted following the acquisition of a motor tracing task (MTT), measured using both somatosensory evoked potentials (SEPs) and transcranial magnetic stimulation. This study compared changes in early SEP peak amplitudes and motor performance following a force-matching tracking task (FMTT) to an MTT.
View Article and Find Full Text PDFAttention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioural characteristics. Our previous work using event-related potentials demonstrated that adults with ADHD process audiovisual multisensory stimuli somewhat differently than neurotypical controls. This study utilised an audiovisual multisensory two-alternative forced-choice discrimination task.
View Article and Find Full Text PDFSubclinical neck pain (SCNP) refers to recurrent neck pain and/or stiffness for which individuals have not yet sought treatment. Prior studies have shown that individuals with SCNP have altered cerebellar processing that exhibits an altered body schema. The cerebellum also plays a vital role in upper limb reaching movements through refining internal models and integrating sensorimotor information.
View Article and Find Full Text PDFEye reflexes that stabilize gaze are essential in navigating daily life. One such reflex is the cervico-ocular reflex (COR). An important neural structure involved in the COR is the cerebellum, which facilitates proper gaze stability through sensorimotor integration to adjust eye movements accordingly.
View Article and Find Full Text PDFEven on pain free days, recurrent neck pain alters sensorimotor integration (SMI) measured via somatosensory evoked potentials (SEPs). Neck muscle fatigue decreases upper limb proprioception, and thus may interfere with upper limb motor task acquisition and SMI. This study aimed to determine the effect of cervical extensor muscle (CEM) fatigue on upper limb motor acquisition and retention; and SMI, measured via early SEPs.
View Article and Find Full Text PDFPurpose: There is growing evidence that vertebral column function and dysfunction play a vital role in neuromuscular control. This invited review summarises the evidence about how vertebral column dysfunction, known as a central segmental motor control (CSMC) problem, alters neuromuscular function and how spinal adjustments (high-velocity, low-amplitude or HVLA thrusts directed at a CSMC problem) and spinal manipulation (HVLA thrusts directed at segments of the vertebral column that may not have clinical indicators of a CSMC problem) alters neuromuscular function.
Methods: The current review elucidates the peripheral mechanisms by which CSMC problems, the spinal adjustment or spinal manipulation alter the afferent input from the paravertebral tissues.
J Electromyogr Kinesiol
August 2021
Introduction: Cervical extensor muscle (CEM) fatigue causes decrements in upper limb proprioceptive accuracy during constrained single-joint tasks. This study used a novel humeral rotation joint position sense (JPS) measurement device to compare JPS accuracy in participants who received acute CEM fatigue vs. non-fatigued controls.
View Article and Find Full Text PDF