Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation.
View Article and Find Full Text PDFThe differentiation of adult neural progenitors (NPCs) into functional neurons is still a limiting factor in the neural stem cell field but mandatory for the potential use of NPCs in therapeutic approaches. Neuronal function requires the appropriate electrophysiological properties. Here, we demonstrate that priming of NPCs using transforming growth factor (TGF)-β1 under conditions that usually favor NPCs' proliferation induces electrophysiological neuronal properties in adult NPCs.
View Article and Find Full Text PDF5-Bromo-2'-deoxyuridin (BrdU) is frequently used in anaylsis of neural stem cell biology, in particular to label and to fate-map dividing cells. However, up to now, only a few studies have addressed the question as to whether BrdU labeling per se affects the cells to be investigated. Here, we focused on the potential impact of BrdU on neurosphere cultures derived from the adult rat brain and on proliferation of progenitors in vivo.
View Article and Find Full Text PDFIt is commonly accepted that adult neurogenesis and gliogenesis follow the same principles through the mammalian class. However, it has been reported that neurogenesis might differ between species, even from the same order, like in rodents. Currently, it is not known if neural stem/progenitor cells (NSPCs) from various species differ in their cell identity and potential.
View Article and Find Full Text PDFCellular proliferation, differentiation, integration, and survival within the adult neural stem cell niche are altered under pathological conditions, but the molecular cues regulating the biology of this niche are mostly unknown. We examined the hippocampal neural stem cell niche in a transgenic rat model of Huntington disease. In this model, progressive cognitive deficits develop at the age of 9 months, suggesting possible hippocampal dysfunction.
View Article and Find Full Text PDFWe recently demonstrated that prolactin (PRL) prevents chronic stress-induced inhibition of adult hippocampal neurogenesis. It remained unsettled, however, whether PRL is acting directly on neural stem and progenitors cells (NPCs) or if neurogenesis is affected by an indirect mechanism, for example through the extensively described effects of PRL on the HPA axis. To address this point, we used neurosphere cultures derived from the adult rat hippocampus as an in vitro model for NPCs.
View Article and Find Full Text PDFIn vivo visualization of endogenous neural progenitor cells (NPCs) is crucial to advance stem cell research and will be essential to ensure the safety and efficacy of neurogenesis-based therapies. Magnetic resonance spectroscopic imaging (i.e.
View Article and Find Full Text PDF