Inflammation-driven foreign body reactions, and the frequently associated encapsulation by fibrogenic fibroblasts, reduce the functionality and longevity of implanted medical devices and materials. Anti-inflammatory drugs, such as dexamethasone, can suppress the foreign body reaction for a few days post-surgery, but lasting drug delivery strategies for long-term implanted materials remain an unmet need. We here establish a thin-coating strategy with novel low molecular weight corticosteroid dimers to suppress foreign body reactions and fibrotic encapsulation of subcutaneous silicone implants.
View Article and Find Full Text PDFThe engineering of soft tissue would benefit from the development of effective biodegradable scaffolds capable of dynamic, elastic loading. For this purpose, highly porous, elastomeric scaffolds containing microporous struts were prepared using a dual porogen approach and a photocrosslinkable elastomer. The combination of paraffin microbeads distributed through a water-in-[star-poly(lactide-co-epsilon-caprolactone) triacrylate dissolved in ethyl acetate] emulsion followed by photocrosslinking generated a macroporous foam scaffold of average porosities between 90% to 93%, with an average pore diameter of 104 +/- 31 microm with struts containing micropores of 3.
View Article and Find Full Text PDFPhotocrosslinked, biodegradable elastomers based on aliphatic polyesters have many desirable features as scaffolds for smooth muscle tissue engineering. However, they lack cell adhesion motifs. To address this shortcoming, two different modification procedures were studied utilizing a high and a low crosslink density elastomer: base etching and the incorporation of acryloyl-poly(ethylene glycol) (PEG)-Gly-Arg-Gly-Asp-Ser (GRGDS) into the elastomer network during photocrosslinking.
View Article and Find Full Text PDF