Introduction: More than 76,000 women die yearly from preeclampsia and hypertensive disorders of pregnancy. Early diagnosis and management of preeclampsia can improve outcomes for both mother and baby. In this study, we developed artificial intelligence models to detect and predict preeclampsia from electrocardiograms (ECGs) in point-of-care settings.
View Article and Find Full Text PDFImportance: Abusive head trauma (AHT) in children is often missed in medical encounters, and retinal hemorrhage (RH) is considered strong evidence for AHT. Although head computed tomography (CT) is obtained routinely, all but exceptionally large RHs are undetectable on CT images in children.
Objective: To examine whether deep learning-based image analysis can detect RH on pediatric head CT.