Publications by authors named "Berit Jungnickel"

Maintenance of genome integrity is instrumental in preventing cancer. In addition to DNA repair pathways that prevent damage to DNA, damage tolerance pathways allow for the survival of cells that encounter DNA damage during replication. The Rad6/18 pathway is instrumental in this process, mediating damage bypass by ubiquitination of proliferating cell nuclear antigen.

View Article and Find Full Text PDF

Secondary immunoglobulin diversification by somatic hypermutation and class switch recombination in B cells is instrumental for an adequate adaptive humoral immune response. These genetic events may, however, also introduce aberrations into other cellular genes and thereby cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch recombination is now well understood, their regulation and in particular the mechanism of their specific targeting to immunoglobulin genes is still rather mysterious.

View Article and Find Full Text PDF

Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein.

View Article and Find Full Text PDF

Secondary Ig diversification in B cells requires the deliberate introduction of DNA damage into the Ig genes by the enzyme activation-induced cytidine deaminase (AID) and the error-prone resolution of AID-induced lesions. These processes must be tightly regulated because they may lead to lymphomagenesis if they act on genes other than the Ig genes. Since B cells may limit secondary Ig diversification mechanisms during the cell cycle to minimize genomic instability, we restricted the activity of AID specifically to the G1 or S/G2 phase to investigate the cell cycle contribution to the regulation of somatic hypermutation, class switch recombination, and Ig gene conversion in human, murine, and avian B cells, respectively.

View Article and Find Full Text PDF

Invasive mucormycosis (IM) is a life-threatening infection caused by the fungal order Mucorales, its diagnosis is often delayed, and mortality rates range from 40-80% due to its rapid progression. Individuals suffering from hematological malignancies, diabetes mellitus, organ transplantations, and most recently COVID-19 are particularly susceptible to infection by Mucorales. Given the increase in the occurrence of these diseases, mucormycosis has emerged as one of the most common fungal infections in the last years.

View Article and Find Full Text PDF

The use of bioprinting allows the creation of complex three-dimensional cell laden grafts with spatial placements of different cell lines. However, a major challenge is insufficient nutrient transfer, especially with the increased size of the graft causing necrosis and reduced proliferation. A possibility to improve nutrient support is the integration of tubular structures for reducing diffusion paths.

View Article and Find Full Text PDF

Animal models are essential to understand the pathophysiology of infections, to test novel antifungal compounds, and to determine the potential of adjunctive therapies, e.g. immune modulation.

View Article and Find Full Text PDF

In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C.

View Article and Find Full Text PDF
Article Synopsis
  • Some tiny fungi usually live on our bodies without hurting us, but they can become dangerous if our immune system is weak.
  • Certain immune cells and special proteins called antibodies can help fight off these dangerous fungi by stopping them from sticking to our body’s cells and causing damage.
  • Even though some fungi can break down human antibodies, this doesn’t stop the antibodies from helping protect us against the fungi.
View Article and Find Full Text PDF

is usually a benign member of the human gut microbiota, but can become pathogenic under certain circumstances, for example in an immunocompromised host. The innate immune system, in particular neutrophils and macrophages, constitutes a crucial first line of defense against fungal invasion, however adaptive immunity may provide long term protection and thus allow vaccination of at risk patients. While T1 and T17 cells are important for antifungal responses, the role of B cells and antibodies in protection from infection is less well defined.

View Article and Find Full Text PDF

p53 plays a major role in genome maintenance. In addition to multiple p53 functions in the control of DNA repair, a regulation of DNA damage bypass via translesion synthesis has been implied in vitro. Somatic hypermutation of immunoglobulin genes for affinity maturation of antibody responses is based on aberrant translesion polymerase action and must be subject to stringent control to prevent genetic alterations and lymphomagenesis.

View Article and Find Full Text PDF

Checkpoint signaling in the context of a functional DNA damage response is crucial for the prevention of oncogenic transformation of cells. Our immune system, though, takes the risk of attenuated checkpoint responses during immunoglobulin diversification. B cells undergo continuous DNA damage and error-prone repair of their immunoglobulin genes during the process of somatic hypermutation.

View Article and Find Full Text PDF

Members of the RAF family of serine-threonine kinases are intermediates in the mitogen-activated protein kinase and extracellular signal-regulated kinase (MAPK-ERK) signaling pathway, which controls key differentiation processes in B cells. By analyzing mice with B cell-specific deletion of , , or both, we showed that Raf-1 and B-Raf acted together in mediating the positive selection of pre-B and transitional B cells as well as in initiating plasma cell differentiation. However, genetic or chemical inactivation of RAFs led to increased ERK phosphorylation in mature B cells.

View Article and Find Full Text PDF

Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-β1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble β-glucan from C.

View Article and Find Full Text PDF

During somatic hypermutation (SHM) of Ig genes in germinal center B cells, lesions introduced by activation-induced cytidine deaminase are processed by multiple error-prone repair pathways. Although error-free repair by homologous recombination (HR) is crucial to prevent excessive DNA strand breakage at activation-induced cytidine deaminase off-target genes, its role at the hypermutating Ig locus in the germinal center is unexplored. Using B cell-specific inactivation of the critical HR factor , we detected decreased proliferation, survival, and thereby class switching of ex vivo-activated B cells.

View Article and Find Full Text PDF

Persistent inflammation is a hallmark of many human diseases, including anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) and atherosclerosis. Here, we describe a dominant trigger of inflammation: human serum factor H-related protein FHR1. In vitro, this protein selectively binds to necrotic cells via its N-terminus; in addition, it binds near necrotic glomerular sites of AAV patients and necrotic areas in atherosclerotic plaques.

View Article and Find Full Text PDF

The Notch receptor is a key mediator of developmental programs and cell-fate decisions. Imbalanced Notch signaling leads to developmental disorders and cancer. To fully characterize the Notch signaling pathway and exploit it in novel therapeutic interventions, a comprehensive view on the regulation and requirements of Notch signaling is needed.

View Article and Find Full Text PDF

Affinity maturation of the humoral immune response depends on somatic hypermutation (SHM) of immunoglobulin (Ig) genes, which is initiated by targeted lesion introduction by activation-induced deaminase (AID), followed by error-prone DNA repair. Stringent regulation of this process is essential to prevent genetic instability, but no negative feedback control has been identified to date. Here we show that poly(ADP-ribose) polymerase-1 (PARP-1) is a key factor restricting AID activity during somatic hypermutation.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g.

View Article and Find Full Text PDF

Maintenance of genome integrity relies on multiple DNA repair pathways as well as on checkpoint regulation. Activation of the checkpoint kinases Chk1 and Chk2 by DNA damage triggers cell cycle arrest and improved DNA repair, or apoptosis in case of excessive damage. Chk1 and Chk2 have been reported to act in a complementary or redundant fashion, depending on the physiological context.

View Article and Find Full Text PDF

During replication, bypass of DNA lesions is orchestrated by the Rad6 pathway. Monoubiquitination of proliferating cell nuclear antigen (PCNA) by Rad6/Rad18 leads to recruitment of translesion polymerases for direct and potentially mutagenic damage bypass. An error-free bypass pathway may be initiated via K63-linked PCNA polyubiquitination by Ubc13/Mms2 and the E3 ligase Rad5 in yeast, or HLTF/SHPRH in vertebrates.

View Article and Find Full Text PDF

Immunoglobulin (Ig) diversification by somatic hypermutation in germinal center B cells is instrumental for maturation of the humoral immune response, but also bears the risk of excessive or aberrant genetic changes. Thus, introduction of DNA damage by activation-induced cytidine deaminase as well as DNA repair by multiple pathways need to be tightly regulated during the germinal center response to prevent lymphomagenesis. In the present study, we show that DNA damage checkpoint signaling via checkpoint kinase 1 (Chk1) negatively regulates somatic hypermutation.

View Article and Find Full Text PDF

In contrast to lower eukaryotes, most vertebrate cells are characterized by a moderate efficiency of homologous recombination (HR) and limited feasibility of targeted genetic modifications. As a notable exception, the chicken DT40 B cell line is distinguished by efficient homology-mediated repair of DNA lesions during Ig gene conversion, and also shows exceptionally high gene-targeting efficiencies. The molecular basis of these phenomena is elusive.

View Article and Find Full Text PDF

Somatic hypermutation of immunoglobulin genes and class switch recombination are pivotal processes in the germinal center (GC) reaction and have been implicated in the development of malignant B-cell lymphoma. Both processes require the enzyme activation-induced cytidine deaminase (AID). Expression of AID is largely restricted to GC B cells and B cells that undergo class switch recombination outside the GC.

View Article and Find Full Text PDF