We perform a systematic study of the α-particle excitation from its ground state 0_{1}^{+} to the 0_{2}^{+} resonance. The so-called monopole transition form factor is investigated via an electron scattering experiment in a broad Q^{2} range (from 0.5 to 5.
View Article and Find Full Text PDFWe report high-precision measurements of the deeply virtual Compton scattering (DVCS) cross section at high values of the Bjorken variable x_{B}. DVCS is sensitive to the generalized parton distributions of the nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic expression of the DVCS cross section for all possible polarization states of the initial and final electron and nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving Compton form factors (CFFs) of the nucleon as a function of x_{B}, while systematically including helicity flip amplitudes.
View Article and Find Full Text PDFWe present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q^{2}) up to 15.75 (GeV/c)^{2}. Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q^{2} and double the range over which a longitudinal or transverse separation of the cross section can be performed.
View Article and Find Full Text PDFWe report measurements of the exclusive neutral pion electroproduction cross section off protons at large values of x_{B} (0.36, 0.48, and 0.
View Article and Find Full Text PDFWe measure ^{2}H(e,e^{'}p)n cross sections at 4-momentum transfers of Q^{2}=4.5±0.5 (GeV/c)^{2} over a range of neutron recoil momenta p_{r}, reaching up to ∼1.
View Article and Find Full Text PDFPhys Rev Lett
November 2019
Virtual Compton scattering on the proton has been investigated at three yet unexplored values of the four-momentum transfer Q^{2}: 0.10, 0.20, and 0.
View Article and Find Full Text PDFWe report on the first Q^{2}-dependent measurement of the beam-normal single spin asymmetry A_{n} in the elastic scattering of 570 MeV vertically polarized electrons off ^{12}C. We cover the Q^{2} range between 0.02 and 0.
View Article and Find Full Text PDFThe helicity-dependent recoil proton polarizations P_{x}^{'} and P_{z}^{'} as well as the helicity-independent component P_{y} have been measured in the p(e[over →],e^{'}p[over →])π^{0} reaction at four-momentum transfer Q^{2}≃0.1 GeV^{2}, center-of-mass proton emission angle θ_{p}^{*}≃90°, and invariant mass W≃1440 MeV. This first precise measurement of double-polarization observables in the energy domain of the Roper resonance P_{11}(1440) by exploiting recoil polarimetry has allowed for the extraction of its scalar electroexcitation amplitude at an unprecedentedly low value of Q^{2}, establishing a powerful instrument for probing the interplay of quark and meson degrees of freedom in the nucleon.
View Article and Find Full Text PDFA massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40 MeV/c^{2} to 300 MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented.
View Article and Find Full Text PDF