Beta-catenin is well-known as a key effector of Wnt signalling and aberrant expression is associated with several human cancers. Stabilisation of and atypical subcellular localisation of beta-catenin, regulated in part through specific protein-protein interactions has been linked to cancer development, however the mechanisms behind these pathologies is yet to be fully elucidated. Affinity purification and mass spectrometry were used to identify potential β-catenin interacting proteins in SW480 colon cancer cells.
View Article and Find Full Text PDFEnzymatic factors driving cancer-associated chromatin remodelling are of increasing interest as the role of the cancer epigenome in gene expression and DNA repair processes becomes elucidated. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) is a central histone modification that functions in histone cross-talk, transcriptional elongation, DNA repair, maintaining centromeric chromatin and replication-dependent histone mRNA 3'-end processing, as well as being required for the differentiation of stem cells. The loss of global H2Bub1 is seen in a number of aggressive malignancies and has been linked to tumour progression and/or a poorer prognosis in some cancers.
View Article and Find Full Text PDFβ-catenin is a key mediator of Wnt signaling and its deregulated nuclear accumulation can drive cancer progression. While the central armadillo (Arm) repeats of β-catenin stimulate nuclear entry, the N- and C-terminal "tail" sequences are thought to regulate turnover and transactivation. We show here that the N- and C-tails are also potent transport sequences.
View Article and Find Full Text PDFWe previously showed that BARD1 is a shuttling protein with pro-apoptotic activity in MCF-7 breast cancer cells. BARD1 is expressed as splice variant isoforms in breast cancer. Here we characterized YFP-tagged BARD1 splice variants (beta, omega, phi, ΔRIN, epsilon) for subcellular localization and apoptotic efficacy.
View Article and Find Full Text PDFThe adenomatous polyposis coli (APC) tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT) growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy.
View Article and Find Full Text PDFActivation of the wnt signaling pathway is a major cause of colon cancer development. Tankyrase inhibitors (TNKSi) have recently been developed to block the wnt pathway by increasing axin levels to promote degradation of the wnt-regulator β-catenin. TNKSi bind to the PARP (poly(ADP)ribose polymerase) catalytic region of tankyrases (TNKS), preventing the PARylation of TNKS and axin that normally control axin levels through ubiquitination and degradation.
View Article and Find Full Text PDFBeta-catenin plays a key role in transducing Wnt signals from the plasma membrane to the nucleus. Here we characterize an unusual subcellular distribution of beta-catenin in MCF-7 breast cancer cells, wherein beta-catenin localizes to the cytoplasm and membrane but atypically did not relocate to the nucleus after Wnt treatment. The inability of Wnt or the Wnt agonist LiCl to induce nuclear localization of beta-catenin was not due to defective nuclear transport, as the transport machinery was intact and ectopic GFP-beta-catenin displayed rapid nuclear entry in living cells.
View Article and Find Full Text PDFMutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region.
View Article and Find Full Text PDFInt J Biochem Cell Biol
January 2016
The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release.
View Article and Find Full Text PDFβ-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin.
View Article and Find Full Text PDFThis article was withdrawn by the authors before final publication on May 18, 2015.
View Article and Find Full Text PDFBARD1 is a breast cancer tumor suppressor with multiple domains and functions. BARD1 comprises a tandem BRCT domain at the C-terminus, and this sequence has been reported to target BARD1 to distinct subcellular locations such as nuclear DNA breakage sites and the centrosome through binding to regulatory proteins such as HP1 and OLA1, respectively. We now identify the BRCT domain as a binding site for p53.
View Article and Find Full Text PDFThe inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2014
Rapid assembly of DNA damage response (DDR) proteins at nuclear "repair" foci is a hallmark response of ionizing radiation (IR)-treated cells. The ubiquitin E3 ligases RNF8 and RNF168 are critical for foci formation, and here we aim to determine their dynamic mobility and abundance at individual foci in living cells. To this end, YFP-tagged RNF8 and RNF168 were expressed at physiological levels in MCF-7 cells, then analyzed by fluorescence recovery after photobleaching (FRAP) assays, nuclear retention measurement, and virus-like particles (VLPs)-based quantification.
View Article and Find Full Text PDF5-fluorouracil (5-FU) is the first line component used in colorectal cancer (CRC) therapy however even in combination with other chemotherapeutic drugs recurrence is common. Mutations of the adenomatous polyposis coli (APC) gene are considered as the initiating step of transformation in familial and sporadic CRCs. We have previously shown that APC regulates the cellular response to DNA replication stress and recently hypothesized that APC mutations might therefore influence 5-FU resistance.
View Article and Find Full Text PDFThe nuclear localization of specific proteins is critical for cellular processes such as cell division, and in recent years perturbation of the nuclear transport cycle of key proteins has been linked to cancer. In particular, specific gene mutations can alter nuclear transport of tumor suppressing and oncogenic proteins, leading to cell transformation or cancer progression. This review will focus on one such factor, β-catenin, a key mediator of the canonical wnt signaling pathway.
View Article and Find Full Text PDFSeveral components of the Wnt signaling pathway have in recent years been linked to the nuclear pore complex. β-catenin, the primary transducer of Wnt signals from the plasma membrane to the nucleus, has been shown to transiently associate with different FG-repeat containing nucleoporins (Nups) and to translocate bidirectionally through pores of the nuclear envelope in a manner independent of classical transport receptors and the Ran GTPase. Two key regulators of β-catenin, IQGAP1 and APC, have also been reported to bind specific Nups or to locate at the nuclear pore complex.
View Article and Find Full Text PDFActin, a constituent of the cytoskeleton, is now recognized to function in the nucleus in gene transcription, chromatin remodeling and DNA replication/repair. Actin shuttles in and out of the nucleus through the action of transport receptors importin-9 and exportin-6. Here we have addressed the impact of cell cycle progression and DNA replication stress on actin nuclear localization, through study of actin dynamics in living cells.
View Article and Find Full Text PDFIQGAP1 is an important cytoskeletal regulator, known to act at the plasma membrane to bundle and cap actin filaments, and to tether the cortical actin meshwork to microtubules via plus-end binding proteins. Here we describe the novel subcellular localization of IQGAP1 at the cytoplasmic face of the nuclear envelope, where it co-located with F-actin. The IQGAP1 and F-actin staining overlapped that of microtubules at the nuclear envelope, revealing a pattern strikingly similar to that observed at the plasma membrane.
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2012
MDC1 (NFBD1) and 53BP1 are critical mediators of the mammalian DNA damage response (DDR) at nuclear foci. Here we show by quantitative imaging assays that MDC1 and 53BP1 are similar in total copy number (~1200 copies per focus), but differ substantially in dynamics at both replication-associated nuclear bodies in normal cells and DNA repair foci in ionizing radiation (IR)-damaged cells. The majority of MDC1 (~80%) is extremely mobile and under continuous exchange, with only a small fraction (~20%) remaining immobile at foci irrespective of IR treatment.
View Article and Find Full Text PDFBackground And Purpose: Ionizing radiation (IR)-induced DNA damage causes the accumulation of DNA damage response (DDR) proteins as visible foci in cell nuclei. Despite the identified functional roles in DNA repair, the spatial relationships of different DDR proteins at foci have not been explicitly examined. This study aims to systematically compare the distribution of DDR proteins at IR-induced foci.
View Article and Find Full Text PDFInt J Biochem Cell Biol
June 2012
β-catenin is the central nuclear effector of the Wnt signaling pathway, and regulates other cellular processes including cell adhesion. Wnt stimulation of cells culminates in the nuclear translocation of β-catenin and transcriptional activation of target genes that function during both normal and malignant development. Constitutive activation of the Wnt pathway leads to inappropriate nuclear accumulation of β-catenin and gene transactivation, an important step in cancer progression.
View Article and Find Full Text PDFThe breast cancer associated gene 1 (BRCA1)-A protein complex assembles at DNA damage-induced nuclear foci to facilitate repair of double-stranded breaks. Here, we describe the first systematic comparison of the dynamics, copy number and organization of its core components at foci. We show that the protein pools at individual foci generally comprise a small immobile fraction (∼20%) and larger mobile fraction (∼80%), which together occupy the same focal space but exist at different densities.
View Article and Find Full Text PDF