Single alpha helices (SAHs) stable in isolated form are often found in motor proteins where they bridge functional domains. Understanding the mechanical response of SAHs is thus critical to understand their function. The quasi-static force-extension relation of a small number of SAHs is known from single-molecule experiments.
View Article and Find Full Text PDFCoiled coils (CCs) are powerful supramolecular building blocks for biomimetic materials, increasingly used for their mechanical properties. Here, we introduce helix-inducing macrocyclic constraints, so-called staples, to tune thermodynamic and mechanical stability of CCs. We show that thermodynamic stabilization of CCs against helix uncoiling primarily depends on the number of staples, whereas staple positioning controls CC mechanical stability.
View Article and Find Full Text PDFThe natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of numerous applications, such as protein-origami structures, drug delivery systems and biomaterials. With the goal of establishing CCs as nanomechanical building blocks, we investigated the importance of helix propensity and hydrophobic core packing on the mechanical stability of 4-heptad CC heterodimers.
View Article and Find Full Text PDFDynamic single-molecule force spectroscopy (SMFS) is a powerful method to characterize the mechanical stability of biomolecules. We address the problem that the standard manner of reporting the extracted energy landscape parameters does not reveal the intrinsic statistical errors associated with them. This problem becomes particularly relevant when SMFS is used to compare two or more different molecular systems.
View Article and Find Full Text PDFCoiled coils are widespread protein motifs in nature, and promising building blocks for bio-inspired nanomaterials and nanoscale force sensors. Detailed structural insight into their mechanical response is required to understand their role in tissues and to design building blocks for applications. We use all-atom molecular dynamics simulations to elucidate the mechanical response of two types of coiled coils under shear: dimers and trimers.
View Article and Find Full Text PDFCoiled coils are important nanomechanical building blocks in biological and biomimetic materials. A mechanistic molecular understanding of their structural response to mechanical load is essential for elucidating their role in tissues and for utilizing and tuning these building blocks in materials applications. Using a combination of single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations, we have investigated the mechanics of synthetic heterodimeric coiled coils of different length (3-4 heptads) when loaded in shear geometry.
View Article and Find Full Text PDFGenomes contain rare guanine-rich sequences capable of assembling into four-stranded helical structures, termed G-quadruplexes, with potential roles in gene regulation and chromosome stability. Their mechanical unfolding has only been reported to date by all-atom simulations, which cannot dissect the major physical interactions responsible for their cohesion. Here, we propose a mesoscopic model to describe both the mechanical and thermal stability of DNA G-quadruplexes, where each nucleotide of the structure, as well as each central cation located at the inner channel, is mapped onto a single bead.
View Article and Find Full Text PDFCations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all-atom molecular dynamics simulations with explicit solvent to analyse the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, a hybrid and an antiparallel DNA and a parallel RNA, in the presence of stabilising cations. We confirm the stability of these conformations in the presence of [Formula: see text] central ions and observe distortions from the tetrad topology in their absence.
View Article and Find Full Text PDFSingle-molecule experiments combined with alternate forces are able to provide useful information not present in standard constant-force and -velocity pulling protocols. Here, we study the effects of such forces in the DNA mechanical unzipping by using an extension of the Peyrard-Bishop-Dauxois model. By changing the damping regime in the dynamical equations, we obtained two resonant mechanisms in both the mean time and the mean force of unzipping.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
We study the influence of a terahertz field on thermal properties of DNA molecules. A Peyrard-Bishop-Dauxois model with the inclusion of a solvent interaction term is considered. The terahertz field is included as a sinusoidal driven force in the equation of motion.
View Article and Find Full Text PDFBackground: Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola).
Methods: Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions.