Publications by authors named "Bergson G Bezerra"

In this study, we applied a multivariate logistic regression model to identify deforested areas and evaluate the current effects on environmental variables in the Brazilian state of Rondônia, located in the southwestern Amazon region using data from the MODIS/Terra sensor. The variables albedo, temperature, evapotranspiration, vegetation index, and gross primary productivity were analyzed from 2000 to 2022, with surface type data from the PRODES project as the dependent variable. The accuracy of the models was evaluated by the parameters area under the curve (AUC), pseudo R, and Akaike information criterion, in addition to statistical tests.

View Article and Find Full Text PDF

Plant species of the Brazilian Caatinga experience seasonal wet and dry extremes, requiring seasonally different leaf characteristics for optimizing water availability. We investigated if Croton blanchetianus Baill exhibits leaf morphoanatomical traits across seasons and positioning in sunlight/natural shade. Leaves of ten 1-3 m tall plants in full sunlight and ten in natural shade were assessed in May, July (wet season), October and December (dry season) 2015 for gas exchange, leaf size, lamina and midrib cross sections (14 parameters), and chloroplast structure (5 parameters).

View Article and Find Full Text PDF

Arid and semi-arid environments correspond to one-third of the Earth's terrestrial surface. In these environments, precipitation is an essential and limiting element for vegetation growth and ecosystem biomass productivity. The semi-arid region of Brazil comprises around 11.

View Article and Find Full Text PDF

Forest ecosystems sequester large amounts of atmospheric CO, and the contribution from seasonally dry tropical forests is not negligible. Thus, the objective of this study was to quantify and evaluate the seasonal and annual patterns of CO exchanges in the Caatinga biome, as well as to evaluate the ecosystem condition as carbon sink or source during years. In addition, we analyzed the climatic factors that control the seasonal variability of gross primary production (GPP), ecosystem respiration (R) and net ecosystem CO exchange (NEE).

View Article and Find Full Text PDF