Biochem Biophys Res Commun
November 2024
Lipid droplets (LD) are storage sites for neutral lipids that can be used as a source of energy during nutrient starvation, but also function as hubs for fatty acid (FA) trafficking between organelles. In the yeast Saccharomyces cerevisiae, the absence of LD causes a severe disorganization of the endomembrane network during starvation. Here we show that cells devoid of LD respond to amino acid (AA) starvation by activating the serine/threonine phosphatase calcineurin and the nuclear translocation of its target protein Crz1.
View Article and Find Full Text PDFPlants live in association with complex populations of microorganisms, including Plant Growth-Promoting Rhizobacteria (PGPR) that confer to plants an improved growth and enhanced stress tolerance. This large and diverse group includes endophytic bacteria that are able to colonize the internal tissues of plants. In the present study, we have isolated a nonrhizobial species from surface sterilized root nodules of , a perennial leguminous species growing in poor and high salinity soils.
View Article and Find Full Text PDFAutophagy is a eukaryotic process responsible for the degradation of intracellular content such as damaged organelles. Several putative autophagy-related genes have been identified within the annotated genome of the free-living amoeba Acanthamoeba castellanii. However, the involvement of the corresponding proteins in the autophagy pathway had not been formerly established.
View Article and Find Full Text PDFMacroautophagy is a degradative pathway whereby cells encapsulate and degrade cytoplasmic material within endogenously-built membranes. Previous studies have suggested that autophagosome membranes originate from lipid droplets. However, it was recently shown that rapamycin could induce autophagy in cells lacking these organelles.
View Article and Find Full Text PDFCanthinones are natural substances with a wide range of biological activities, including antipyretic, antiparasitic, and antimicrobial. Antiproliferative and/or cytotoxic effects of canthinones on cancer cells have also been described, although their mechanism of action remains ill defined. To gain better insight into this mechanism, the antiproliferative effect of a commercially available canthin-6-one (1) was examined dose-dependently on six cancer cell lines (human prostate, PC-3; human colon, HT-29; human lymphocyte, Jurkat; human cervix, HeLa; rat glioma, C6; and mouse embryonic fibroblasts, NIH-3T3).
View Article and Find Full Text PDFThis study reports that the spontaneous 50-fold activation of rhodopsin gene transcription, observed in cultured retinal precursors from 13-day chicken embryo, relies on a Ca(2+)-dependent mechanism. Activation of a transiently transfected rhodopsin promoter (luciferase reporter) in these cells was inhibited (60%) by cotransfection of a dominant-negative form of the cAMP-responsive element-binding protein. Both rhodopsin promoter activity and rhodopsin mRNA accumulation were blocked by Ca(2+)/calmodulin-dependent kinase II inhibitors, but not by protein kinase A inhibitors, suggesting a role of Ca(2+) rather than cAMP.
View Article and Find Full Text PDFIn crustaceans, the androgenic gland (AG), thanks to the synthesis of the androgenic gland hormone (AGH), controls the differentiation of the primary and secondary male sexual characters. In this study, we amplified 12 new AGH cDNAs in species belonging to five different families of the infra-order Ligiamorpha of terrestrial isopods. Putative essential amino acids for the production of a functional AGH protein exhibit signatures of negative selection and are strictly conserved including typical proteolytic cleavage motifs, a putative N-linked glycosylation motif on the A chains and the eight Cys positions.
View Article and Find Full Text PDFThe blue-green phenazine, Pyocyanin (PYO), is a well-known virulence factor produced by Pseudomonas aeruginosa, notably during cystic fibrosis lung infections. It is toxic to both eukaryotic and bacterial cells and several mechanisms, including the induction of oxidative stress, have been postulated. However, the mechanism of PYO toxicity under the physiological conditions of oxygen limitation that are encountered by P.
View Article and Find Full Text PDFScreening for suppressors of canthin-6-one toxicity in yeast identified Yap1, a transcription factor involved in cell response to a broad range of injuries. Although canthin-6-one did not promote a significant oxidative stress, overexpression of YAP1 gene clearly increased resistance to this drug. We demonstrated that Yap1-mediated resistance involves the plasma membrane major-facilitator-superfamily efflux pump Flr1 but not the vacuolar ATP-binding-cassette transporter Ycf1.
View Article and Find Full Text PDFParkinson disease is a neurodegenerative pathology that has been linked to several genetic mutations of the SNCA gene encoding the pro-oxidant α-synuclein protein. The budding yeast Saccharomyces cerevisiae is a valuable model for studying the cellular and molecular mechanisms of α-synuclein toxicity. Indeed heterologous expression of α-synuclein is toxic to wild-type yeast and exhibits the main features of damage caused to mammalian neurons, including an increase in neutral lipid storage (triglycerides and steryl esters, embedded into lipid droplets).
View Article and Find Full Text PDFThe isoprenoid pathway in yeasts is important not only for sterol biosynthesis but also for the production of nonsterol molecules, deriving from farnesyl diphosphate (FPP), implicated in N-glycosylation and biosynthesis of heme and ubiquinones. FPP formed from mevalonate in a reaction catalyzed by FPP synthase (Erg20p). In order to investigate the regulation of Erg20p in Saccharomyces cerevisiae, we searched for its protein partners using a two-hybrid screen, and identified five interacting proteins, among them Yta7p.
View Article and Find Full Text PDFPetite mutations have been described in Saccharomyces cerevisiae and pathogenic yeasts. However, previous studies of the phenotypic traits of these petite mutants reported that they express azole resistance. We describe a clinical isolate of Candida glabrata with a striking association between increased susceptibility to azoles and respiratory deficiency.
View Article and Find Full Text PDFStress within the endoplasmic reticulum (ER) induces a coordinated response, namely the unfolded protein response (UPR), devoted to helping the ER cope with the accumulation of misfolded proteins. Failure of the UPR plays an important role in several human diseases. Recent studies report that intracellular accumulation of saturated fatty acids (SFAs) and cholesterol, seen in diseases of high incidence, such as obesity or atherosclerosis, results in ER stress.
View Article and Find Full Text PDFRsp5p, a yeast S. cerevisiae ubiquitin ligase, is essential for regulation of unsaturated fatty acid synthesis via activation of the transcriptional activators Spt23p and Mga2p. Here we show that the conditional mutant rsp5-19 produces decreased levels of the end products of mevalonate pathway, such as ergosterol, ubiquinone and of dolichols, especially those with 19-24 isoprene units.
View Article and Find Full Text PDFUnlike the molecular mechanisms that lead to azole drug resistance, the molecular mechanisms that lead to polyene resistance are poorly documented, especially in pathogenic yeasts. We investigated the molecular mechanisms responsible for the reduced susceptibility to polyenes of a clinical isolate of Candida glabrata. Sterol content was analyzed by gas-phase chromatography, and we determined the sequences and levels of expression of several genes involved in ergosterol biosynthesis.
View Article and Find Full Text PDFThe antibiofilm activity of 10 terpenes was tested in vitro against three Candida species by 24-h treatment of biofilms aged 1-5 days. Treatment of 24-h-old Candida albicans biofilms with carvacrol, geraniol or thymol (0.06%) resulted in >80% inhibition.
View Article and Find Full Text PDFWhen heme biosynthesis is disrupted, the yeast Saccharomyces cerevisiae becomes unable to synthesize its major sterol, ergosterol, and desaturate fatty acids. We took advantage of this physiological peculiarity to evaluate the consequences of ergosterol and/or unsaturated fatty acid (UFA) depletions on the biogenesis of a model polytopic plasma membrane protein, the uracil permease Fur4p. We show that under UFA shortage, which results in low amounts of diunsaturated phospholipid species, and under ergosterol depletion, Fur4p is prematurely routed from the Golgi apparatus to the vacuolar lumen in a process that requires the ubiquitin ligase Rsp5p.
View Article and Find Full Text PDFThe yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem.
View Article and Find Full Text PDFLittle information is available about the molecular mechanisms responsible for polyene resistance in pathogenic yeasts. A clinical isolate of Candida glabrata with a poor susceptibility to polyenes, as determined by disk diffusion method and confirmed by determination of MIC, was recovered from a patient treated with amphotericin B. Quantitative analysis of sterols revealed a lack of ergosterol and an accumulation of late sterol intermediates, suggesting a defect in the final steps of the ergosterol pathway.
View Article and Find Full Text PDFThe Rsp5 ubiquitin ligase plays a role in many cellular processes including the biosynthesis of unsaturated fatty acids. The PIS1 (phosphatidylinositol synthase gene) encoding the enzyme Pis1p which catalyses the synthesis of phosphatidylinositol from CDP-diacyglycerol and inositol, was isolated in a screen for multicopy suppressors of the rsp5 temperature sensitivity phenotype. Suppression was allele non-specific.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2005
Azole resistance has been insufficiently investigated in the yeast Candida tropicalis. Here we determined the molecular mechanisms responsible for azole resistance in a clinical isolate of this pathogenic yeast. Antifungal susceptibility testing performed by a disk diffusion method showed resistance or markedly decreased susceptibility to azoles, which was confirmed by determination of MICs.
View Article and Find Full Text PDFIn the yeast Saccharomyces cerevisiae the RER2 and SRT1 genes encode Rer2 and Srt1 proteins with cis-prenyltransferase (cis-PT-ase) activity. Both cis-PT-ases utilize farnesyl diphosphate (FPP) as a starter for polyprenyl diphosphate (dolichol backbone) formation. The products of the Rer2 and Srt1 proteins consist of 14-17 and 18-23 isoprene units, respectively.
View Article and Find Full Text PDFAntimicrob Agents Chemother
May 2004
We previously showed that resistant colonies of Candida glabrata inside the azole inhibition zones had respiratory deficiency due to mutations in mitochondrial DNA. Here, we analyzed the mechanisms of azole resistance in petite mutants of C. glabrata obtained by exposure to fluconazole or induced by ethidium bromide.
View Article and Find Full Text PDF