The rotational excitation of a singly deuterated water molecule (HDO) by a heavy atom (Ne) and a light diatomic molecule (H) is investigated theoretically and experimentally in the near-threshold regime. Crossed-molecular-beam measurements with a variable crossing angle are compared to close-coupling calculations based on high-accuracy potential energy surfaces. The two lowest rotational transitions, 0 → 1 and 0 → 1, are probed in detail and a good agreement between theory and experiment is observed for both transitions in the case of HDO + Ne, where scattering resonances are however blurred out experimentally.
View Article and Find Full Text PDFWe present a combined experimental and theoretical study on the rotationally inelastic scattering of heavy water, DO, with -H. Crossed-molecular beam measurements are performed in the collision energy range between 10 and 100 cm, corresponding to the near-threshold regime in which scattering resonances are most pronounced. State-to-state excitation cross-sections are obtained by probing three low-lying rotational levels of DO using the REMPI technique.
View Article and Find Full Text PDFMolecular scattering at collisional energies of the order of 10-100 cm^{-1} (corresponding to kinetic temperatures in the 15-150 K range) provides insight into the details of the scattering process and, in particular, of the various resonances that appear in inelastic cross sections. In this Letter, we present a detailed experimental and theoretical study of the rotationally inelastic scattering of ground-state ortho-D_{2}O by ground-state para-H_{2} in the threshold region of the D_{2}O(0_{00}→2_{02}) transition at 35.9 cm^{-1}.
View Article and Find Full Text PDFThe rate coefficient, (), for the gas-phase reaction between OH radicals and acetone CHC(O)CH, has been measured using the pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique ( = 11.7-64.4 K).
View Article and Find Full Text PDFNew molecular beam scattering experiments are reported for the water-hydrogen system. Integral cross sections of the first rotational excitations of - and -HO by inelastic collisions with -H were determined by crossing a beam of HO seeded in He with a beam of H. HO and H were cooled in the supersonic expansion down to their lowest rotational levels.
View Article and Find Full Text PDFFine-structure populations and collision-induced energy transfer in atoms are of interest for many fields, from combustion to astrophysics. In particular, neutral carbon atoms are known to play a role in interstellar media, either as probes of physical conditions (ground state P spin-orbit populations), or as cooling agent (collisional excitation followed by radiative decay). This work aims at investigating the spin-orbit excitation of atomic carbon in its ground electronic state due to collisions with molecular deuterium, an isotopic variant of H, the most abundant molecule in the interstellar medium.
View Article and Find Full Text PDFNonadiabatic effects are of fundamental interest in collision dynamics. In particular, inelastic collisions between open-shell atoms and molecules, such as the collisional excitation of C( P ) by H, are governed by nonadiabatic and spin-orbit couplings that are the sole responsible of collisional energy transfer. Here, we study collisions between carbon in its ground state C( P ) and molecular hydrogen (H) at low collision energies that result in spin-orbit excitation to C( P ) and C( P ).
View Article and Find Full Text PDFInelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C(P) and helium atoms-at collision energies in the vicinity of spin-orbit excitation thresholds (~0.
View Article and Find Full Text PDFA joint crossed beam and quantum mechanical investigation of the rotationally inelastic collisions of CO with ortho- and para-D molecules is reported. A new 4D potential energy surface (PES) averaged over the ground vibrational states of D and CO is used to calculate the rovibrational bound states of the ortho-D-CO complexes. Close coupling calculations are then performed in the rigid rotor approximation for ortho- and para-D colliding with CO for the experimentally investigated transition of CO (j = 0 → 1) and for collision energies ranging from 0.
View Article and Find Full Text PDFWe performed synergic experimental/theoretical studies on the mechanism of the O((3)P) + propyne reaction by combining crossed molecular beams experiments with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy (Ec) with ab initio electronic structure calculations at a high level of theory of the relevant triplet and singlet potential energy surfaces (PESs) and statistical calculations of branching ratios (BRs) taking into account intersystem crossing (ISC). In this paper (I) we report the results of the experimental investigation, while the accompanying paper (II) shows results of the theoretical investigation with comparison to experimental results.
View Article and Find Full Text PDFThe excitation function of the S((1)D) + D2 reaction was determined in a crossed molecular beam apparatus for collision energies ranging from 1817 to 47 J mol(-1) in the near-cold regime. A very good overall agreement was found between experimental data and the theoretical results obtained using the ab initio potential energy surface built by Ho and coworkers and different methods: time-independent quantum dynamics (QM), semiclassical mean potential capture theory (sc-MPCT), and quasi-classical trajectories (QCT). The general trend of the experimental excitation function is well reproduced in most of the range by a simple capture calculation with an R(-6) dispersion potential.
View Article and Find Full Text PDFWe report direct experimental and theoretical evidence that, under single-collision conditions, the dominant product channels of the O((3)P) + propyne and O((3)P) + allene isomeric reactions lead in both cases to CO formation, but the coproducts are singlet ethylidene ((1)CH3CH) and singlet ethylene (CH2CH2), respectively. These data, which settle a long-standing issue on whether ethylidene is actually formed in the O((3)P) + propyne reaction, suggest that formation of CO + alkylidene biradicals may be a common mechanism in O((3)P) + alkyne reactions, in contrast to formation of CO + alkene molecular products in the corresponding isomeric O((3)P) + diene reactions, either in combustion or other gaseous environments. These findings are of fundamental relevance and may have implications for improved combustion models.
View Article and Find Full Text PDFComprehension of the detailed mechanism of O((3)P) + unsaturated hydrocarbon reactions is complicated by the existence of many possible channels and intersystem crossing (ISC) between triplet and singlet potential energy surfaces (PESs). We report synergic experimental/theoretical studies of the O((3)P) + propene reaction by combining crossed molecular beams experiments using mass spectrometric detection at 9.3 kcal/mol collision energy (Ec) with high-level ab initio electronic structure calculations of the triplet PES and RRKM/master equation computations of branching ratios (BRs) including ISC.
View Article and Find Full Text PDFIn molecular collisions, long-lived complexes may be formed that correspond to quasi-bound states in the van der Waals potential and give rise to peaks in the collision energy-dependent cross-sections. They are known as 'resonances' and their experimental detection remains difficult because their signatures are extremely challenging to resolve. Here, we show a complete characterization of quantum-dynamical resonances occurring in CO-He inelastic collisions with rotational CO(j = 0->1) excitation.
View Article and Find Full Text PDFThe gas phase reaction of the hydroxyl radical with allene has been studied theoretically and experimentally in a continuous supersonic flow reactor over the range 50 ≤ T/K ≤ 224. This reaction has been found to exhibit a negative temperature dependence over the entire temperature range investigated, varying between (0.75 and 5.
View Article and Find Full Text PDFWe report on crossed-beam experiments and quantum-mechanical calculations performed on the CO(j=0) + H2(j=0) → CO(j=1) + H2(j=0) system. The experimental cross sections determined in the threshold region of the CO(j=0 → j=1) transition at 3.85 cm(-1) show resonance structures in good qualitative agreement with the theoretical ones.
View Article and Find Full Text PDFWe report integral cross sections for the S(1D2)+HD(j=0)→DS+H and HS+D reaction channels obtained through crossed-beam experiments reaching collision energies as low as 0.46 meV and from adiabatic time-independent quantum-mechanical calculations. While good overall agreement with experiment at energies above 10 meV is observed, neither the product channel branching ratio nor the low-energy resonancelike features in the HS+D channel can be theoretically reproduced.
View Article and Find Full Text PDFRecent advances in Earth and satellite based observations of molecules in interstellar environments and in planetary atmospheres have highlighted the lack of information regarding many important gas-phase formation mechanisms involving neutral species at low temperatures. Whilst significant progress has been made towards a better understanding of radical-molecule reactions in these regions, the inherent difficulties involved in the investigation of reactions between two unstable radical species have hindered progress in this area. This perspective article provides a brief review of the most common techniques applied to study radical-radical reactions below room temperature, before outlining the developments in our laboratory that have allowed us to extend such measurements to temperatures relevant to astrochemical environments.
View Article and Find Full Text PDFMany chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N(2), with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N(2) is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N(2)H(+).
View Article and Find Full Text PDFMore than 100 reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N((4)S) + OH((2)Π) → H((2)S) + NO((2)Π) reaction in a supersonic flow (Laval nozzle) reactor.
View Article and Find Full Text PDFThe integral cross section of the S((1)D(2)) + H(2)(j = 0) → SH + H reaction has been measured for the first time at collision energies from 0.820 down to 0.078 kJ mol(-1) in a high-resolution crossed beam experiment.
View Article and Find Full Text PDF