Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD.
View Article and Find Full Text PDFBackground: This study evaluated the clinical characteristics of neuronal ceroid lipofuscinosis type 7 or CLN7 disease spectrum to characterize the clinical, electrophysiologic and neuroimaging phenotypes.
Methods: We performed a single-center cross sectional data collection along with retrospective medical chart review in patients with a genetic diagnosis of CLN7. This study received ethical approval by the University of Texas Southwestern Medical Center Institutional Review Board.
Leigh syndrome, a severe neurological disorder is commonly caused by homozygous or bi-allelic pathogenic variants in the SURF1 gene. SURF1 deficiency leads to dysfunction of Cytochrome C Oxidase (COX) activity, which is crucial for mitochondrial oxidative phosphorylation. Understanding COX activity's correlation with disease severity is essential for developing SURF1 Leigh Syndrome biomarkers.
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells.
View Article and Find Full Text PDFLafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments.
View Article and Find Full Text PDFBackground: This study evaluated the clinical characteristics of neuronal ceroid lipofuscinosis type 7 or CLN7 disease spectrum to characterize the clinical, electrophysiologic and neuroimaging phenotypes.
Methods: We performed a single-center cross sectional data collection along with retrospective medical chart review in patients with a genetic diagnosis of CLN7. This study received ethical approval by the University of Texas Southwestern Medical Center Institutional Review Board.
There are more than 10,000 individual rare diseases and most are without therapy. Personalized genetic therapy represents one promising approach for their treatment. We present a road map for individualized treatment of an ultra-rare disease by establishing a gene replacement therapy developed for a single patient with hereditary spastic paraplegia type 50 (SPG50).
View Article and Find Full Text PDFGlycerophosphocholine (GPC) is an important precursor for intracellular choline supply in phosphatidylcholine (PC) metabolism. GDE5/Gpcpd1 hydrolyzes GPC into choline and glycerol 3-phosphate; this study aimed to elucidate its physiological function in vivo. Heterozygous whole-body GDE5-deficient mice reveal a significant GPC accumulation across tissues, while homozygous whole-body knockout results in embryonic lethality.
View Article and Find Full Text PDFLafora disease is a fatal teenage-onset progressive myoclonus epilepsy and neurodegenerative disease associated with polyglucosan bodies. Polyglucosans are long-branched and as a result precipitation- and aggregation-prone glycogen. In mouse models, downregulation of glycogen synthase, the enzyme that elongates glycogen branches, prevents polyglucosan formation and rescues Lafora disease.
View Article and Find Full Text PDFIn this Correspondence, B. Minassian and colleagues report that GHF201, an autophagy activator shown to diminish abnormal glycogen aggregates in a mouse model of Adult Polyglucosan Body Disease, fails to reduce such accumulations in a mouse model of Lafora disease. [Image: see text]
View Article and Find Full Text PDFAt least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen's spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency.
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in and determine that variant type is correlated with disease severity.
View Article and Find Full Text PDFEPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy.
View Article and Find Full Text PDFLafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments.
View Article and Find Full Text PDFPatients with Lafora disease have a mutation in EPM2A or EPM2B, resulting in dysregulation of glycogen metabolism throughout the body and aberrant glycogen molecules that aggregate into Lafora bodies. Lafora bodies are particularly damaging in the brain, where the aggregation drives seizures with increasing severity and frequency, coupled with neurodegeneration. Previous work employed mouse genetic models to reduce glycogen synthesis by approximately 50%, and this strategy significantly reduced Lafora body formation and disease phenotypes.
View Article and Find Full Text PDFLafora disease (LD) is a progressive neurologic disorder caused by biallelic pathogenic variants in or , leading to tissue accumulation of polyglucosan aggregates termed Lafora bodies (LBs). This study aimed to characterize the retinal phenotype in mice by examining knockout (KO; ) and control (WT) littermates at two time points (10 and 14 months, respectively). In vivo exams included electroretinogram (ERG) testing, optical coherence tomography (OCT) and retinal photography.
View Article and Find Full Text PDFBackground: This retrospective chart review evaluated the clinical characteristics of SURF1-related neurological disease spectrum to better characterize the phenotypes.
Methods: Patient demographics, magnetic resonance imaging abnormalities, neurological events, motor abnormalities, and gastrointestinal and respiratory assistance were evaluated in 27 patients with genetically diagnosed SURF1 deficiency.
Results: The mean (S.
Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure.
View Article and Find Full Text PDFEpileptic encephalopathies may arise from single gene variants. In recent years, next-generation sequencing technologies have enabled an explosion of gene identification in monogenic epilepsies. One such example is the epileptic encephalopathy SLC13A5 deficiency disorder, which is caused by loss of function pathogenic variants to the gene SLC13A5 that results in deficiency of the sodium/citrate cotransporter.
View Article and Find Full Text PDFGenetic epilepsies are a spectrum of disorders characterized by spontaneous and recurrent seizures that can arise from an array of inherited or de novo genetic variants and disrupt normal brain development or neuronal connectivity and function. Genetically determined epilepsies, many of which are due to monogenic pathogenic variants, can result in early mortality and may present in isolation or be accompanied by neurodevelopmental disability. Despite the availability of more than 20 antiseizure medications, many patients with epilepsy fail to achieve seizure control with current therapies.
View Article and Find Full Text PDFBackground: The developmental and epileptic encephalopathies (DEEs) are the most severe group of epilepsies which co-present with developmental delay and intellectual disability (ID). DEEs usually occur in people without a family history of epilepsy and have emerged as primarily monogenic, with damaging rare mutations found in 50% of patients. Little is known about the genetic architecture of patients with DEEs in whom no pathogenic variant is identified.
View Article and Find Full Text PDFObjective: Microdeletions are associated with different forms of epilepsy but show incomplete penetrance, which is not well understood. We aimed to assess whether unmasked variants or double CNVs could explain incomplete penetrance.
Methods: We analyzed copy number variants (CNVs) in 603 patients with four different subgroups of epilepsy and 945 controls.