Long-lived PFKFB3-expressing β-cells are dysfunctional partly because of prevailing glycolysis that compromises metabolic coupling of insulin secretion. Their accumulation in type 2 diabetes (T2D) appears to be related to the loss of apoptotic competency of cell fitness competition that maintains islet function by favoring constant selection of healthy "winner" cells. To investigate how PFKFB3 can disguise the competitive traits of dysfunctional "loser" β-cells, we analyzed the overlap between human β-cells with bona fide "loser signature" across diabetes pathologies using the HPAP scRNA-seq and spatial transcriptomics of PFKFB3-positive β-cells from nPOD T2D pancreata.
View Article and Find Full Text PDFHIF1α and PFKFB3 play a critical role in the survival of damaged β-cells in type-2 diabetes while rendering β-cells non-responsive to glucose stimulation. To discriminate the role of PFKFB3 from HIF1α in vivo, we generated mice with conditional β-cell specific disruption of the Pfkfb3 gene on a human islet pancreatic polypeptide (hIAPP) background and a high-fat diet (HFD) [PFKFB3 + diabetogenic stress (DS)]. PFKFB3 disruption in β-cells under DS led to selective purging of hIAPP-damaged β-cells and the disappearance of insulin- and glucagon positive bihormonal cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
The mitochondrial pyruvate dehydrogenase (PDH) complex (PDC) acts as a central metabolic node that mediates pyruvate oxidation and fuels the tricarboxylic acid cycle to meet energy demand. Here, we reveal another level of regulation of the pyruvate oxidation pathway in mammals implicating the E4 transcription factor 1 (E4F1). E4F1 controls a set of four genes [dihydrolipoamide acetlytransferase (Dlat), dihydrolipoyl dehydrogenase (Dld), mitochondrial pyruvate carrier 1 (Mpc1), and solute carrier family 25 member 19 (Slc25a19)] involved in pyruvate oxidation and reported to be individually mutated in human metabolic syndromes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
The multifunctional protein E4 transcription factor 1 (E4F1) is an essential regulator of epidermal stem cell (ESC) maintenance. Here, we found that E4F1 transcriptionally regulates a metabolic program involved in pyruvate metabolism that is required to maintain skin homeostasis. E4F1 deficiency in basal keratinocytes resulted in deregulated expression of dihydrolipoamide acetyltransferase (Dlat), a gene encoding the E2 subunit of the mitochondrial pyruvate dehydrogenase (PDH) complex.
View Article and Find Full Text PDF