Detecting microevolutionary responses to natural selection by observing temporal changes in individual breeding values is challenging. The collection of suitable datasets can take many years and disentangling the contributions of the environment and genetics to phenotypic change is not trivial. Furthermore, pedigree-based methods of obtaining individual breeding values have known biases.
View Article and Find Full Text PDFGenomic prediction, the technique whereby an individual's genetic component of their phenotype is estimated from its genome, has revolutionised animal and plant breeding and medical genetics. However, despite being first introduced nearly two decades ago, it has hardly been adopted by the evolutionary genetics community studying wild organisms. Here, genomic prediction is performed on eight traits in a wild population of Soay sheep.
View Article and Find Full Text PDFHow do environmental conditions influence selection and genetic variation in wild populations? There is widespread evidence for selection-by-environment interactions (S*E), but we reviewed studies of natural populations estimating the extent of genotype-by-environment interactions (G*E) in response to natural variation in environmental conditions and found that evidence for G*E appears to be rare within single populations in the wild. Studies estimating the simultaneous impact of environmental variation on both selection and genetic variation are especially scarce. Here, we used 24 years of data collected from a wild Soay sheep population to quantify how an important environmental variable, population density, impacts upon (1) selection through annual contribution to fitness and (2) expression of genetic variation, in six morphological and life history traits: body weight, hind leg length, parasite burden, horn length, horn growth, and testicular circumference.
View Article and Find Full Text PDFIn humans, the effect of paternal age at conception (PAC) on offspring leukocyte telomere length (LTL) is well established, with older fathers thought to pass on longer telomeres to their offspring in their sperm. Few studies have looked for PAC effects in other species, but it has been hypothesised that the effect will be exacerbated in polygamous species with higher levels of sperm competition and production. We test for maternal (MAC) and paternal age at conception effects on offspring LTL in Soay sheep, a primitive breed experiencing strong sperm competition.
View Article and Find Full Text PDFHeredity (Edinb)
January 2017
Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual's own inbreeding or maternal inbreeding.
View Article and Find Full Text PDFWhen estimating heritability in free-living populations, it is common practice to account for common environment effects, because of their potential to generate phenotypic covariance among relatives thereby biasing heritability estimates. In quantitative genetic studies of natural populations, however, philopatry, which results in relatives being clustered in space, is rarely accounted for. The two studies that have been carried out so far suggest absolute declines in heritability estimates of up to 43% when accounting for space sharing by relatives.
View Article and Find Full Text PDFThere is ample evidence for inbreeding depression manifested as a reduction in fitness or fitness-related traits in the focal individual. In many organisms, fitness is not only affected by genes carried by the individual, but also by genes carried by their parents, for example if receiving parental care. While maternal effects have been described in many systems, the extent to which inbreeding affects fitness directly through the focal individual, or indirectly through the inbreeding coefficients of its parents, has rarely been examined jointly.
View Article and Find Full Text PDFMeiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations.
View Article and Find Full Text PDFThe degree to which changes in lifespan are coupled to changes in senescence in different physiological systems and phenotypic traits is a central question in biogerontology. It is underpinned by deeper biological questions about whether or not senescence is a synchronised process, or whether levels of synchrony depend on species or environmental context. Understanding how natural selection shapes patterns of synchrony in senescence across physiological systems and phenotypic traits demands the longitudinal study of many phenotypes under natural conditions.
View Article and Find Full Text PDFKnowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free-living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs.
View Article and Find Full Text PDFHosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host-parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites.
View Article and Find Full Text PDFThe estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs.
View Article and Find Full Text PDFSexual selection, through intra-male competition or female choice, is assumed to be a source of strong and sustained directional selection in the wild. In the presence of such strong directional selection, alleles enhancing a particular trait are predicted to become fixed within a population, leading to a decrease in the underlying genetic variation. However, there is often considerable genetic variation underlying sexually selected traits in wild populations, and consequently, this phenomenon has become a long-discussed issue in the field of evolutionary biology.
View Article and Find Full Text PDFBackground: Coevolution with parasites and population size are both expected to influence the evolution of mating rates. To gain insights into the interaction between these dual selective factors, we used populations from a coevolution experiment with the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. We maintained each experimental population at two different population sizes.
View Article and Find Full Text PDFThe evolution of reproductive isolation among populations is often the result of selective forces. Among those, parasites exert strong selection on host populations and can thus also potentially drive reproductive isolation. This hypothesis has yet to be explicitly tested, and here we set up a multigenerational coevolution experiment to explore this possibility.
View Article and Find Full Text PDFBackground: One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread.
View Article and Find Full Text PDFBackground: Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions) and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist.
View Article and Find Full Text PDFHost-parasite coevolution can lead to a variety of outcomes, but whereas experimental studies on clonal populations have taken prominence over the last years, experimental studies on obligately out-crossing organisms are virtually absent so far. Therefore, we set up a coevolution experiment using four genetically distinct lines of Tribolium castaneum and its natural obligately killing microsporidian parasite, Nosema whitei. After 13 generations of experimental coevolution, we employed a time-shift experiment infecting hosts from the current generation with parasites from nine different time points in coevolutionary history.
View Article and Find Full Text PDFGenetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane's hypothesis has rarely been tested experimentally for unambiguous support.
View Article and Find Full Text PDFStandard epidemiological theory predicts that parasites, which continuously release propagules during infection, face a trade-off between virulence and transmission. However, little is known how host resistance and parasite virulence change during coevolution with obligate killers. To address this question we have set up a coevolution experiment evolving Nosema whitei on eight distinct lines of Tribolium castaneum.
View Article and Find Full Text PDFHosts are often target to multiple simultaneous infections by genetically diverse parasite strains. The interaction among these strains and the interaction of each strain with the host was shown to have profound effects on the evolution of parasite traits. Host factors like genetic architecture of resistance have so far been largely neglected.
View Article and Find Full Text PDFTetraploid inheritance has two extremes: disomic in allotetraploids and tetrasomic in autotetraploids. The possibility of mixed, or intermediate, inheritance models has generally been neglected. These could well apply to newly formed hybrids or to diploidizing (auto)tetraploids.
View Article and Find Full Text PDFGenetically coupled antagonistic coevolution between host and parasites can select for the maintenance of recombination in the host. Mechanistically, maintenance of recombination relies on epistatic interactions between resistance genes creating linkage disequilibria (LD). The role of epistasis in host resistance traits is however only partly understood.
View Article and Find Full Text PDF