Quorum sensing (QS) in coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist.
View Article and Find Full Text PDFDespite the fact that bacterial infections are one of the leading causes of death worldwide and that mortality rates are increasing at alarming rates, no new antibiotics have been produced by the pharmaceutical industry in more than a decade. The situation is so dire that the World Health Organization warned that we may enter a "post-antibiotic era" within this century; accordingly, bacteria resistant against all known antibiotics are becoming common and already producing untreatable infections. Although several novel approaches to combat bacterial infections have been proposed, they have yet to be implemented in clinical practice.
View Article and Find Full Text PDFQuorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections.
View Article and Find Full Text PDFPseudomonas aeruginosa colonizes the lungs of cystic fibrosis patients causing severe damage. This bacterium is intrinsically resistant to antibiotics and shows resistance against new antimicrobials and its virulence is controlled by the quorum-sensing response. Thus, attenuating its virulence by quorum quenching instead of inhibiting its growth has been proposed to minimize resistance; however, resistance against the canonical quorum quencher furanone C-30 can be achieved by mutations leading to increased efflux.
View Article and Find Full Text PDFThe novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status.
View Article and Find Full Text PDF