To support a safe application of graphene-related materials (GRMs) it is necessary to understand the potential negative impacts they could have on human health, in particular on the lung - one of the most sensitive exposure routes. Machine learning (ML) approaches can help analyse the results of multiple toxicity studies to understand the structure-activity relationship and the effect of experimental conditions, thus supporting predictive nanotoxicology. In this work we collected in vitro cytotoxicity data obtained from studies using lung cells; we then fitted multiple regression models to predict this endpoint based on the material properties and experimental conditions.
View Article and Find Full Text PDF