Bacteria use the twin arginine translocator (Tat) system to export folded proteins from the cytosol to the bacterial envelope or to the extracellular environment. As with most Gram-negative bacteria, the Tat system of the zoonotic pathogen Brucella spp. is encoded by a three-gene operon, Our attempts, using several different strategies, to create a Brucella suis strain 1330 mutant were all unsuccessful.
View Article and Find Full Text PDFExtracellular DNA (eDNA) is a major constituent of the extracellular matrix of Pseudomonas aeruginosa biofilms and its release is regulated via pseudomonas quinolone signal (PQS) dependent quorum sensing (QS). By screening a P. aeruginosa transposon library to identify factors required for DNA release, mutants with insertions in the twin-arginine translocation (Tat) pathway were identified as exhibiting reduced eDNA release, and defective biofilm architecture with enhanced susceptibility to tobramycin.
View Article and Find Full Text PDFFront Cell Infect Microbiol
August 2020
has evolved multiple strategies to disarm and take advantage of its host. For this purpose, this opportunist pathogen has particularly developed protein secretion in the surrounding medium or injection into host cells. Among this, the type VI secretion system (T6SS) is utilized to deliver effectors into eukaryotic host as well as target bacteria.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2019
Antivirulence strategies aim to target pathogenicity factors while bypassing the pressure on the bacterium to develop resistance. The MgtC membrane protein has been proposed as an attractive target that is involved in the ability of several major bacterial pathogens, including , to survive inside macrophages. In liquid culture, MgtC acts negatively on biofilm formation.
View Article and Find Full Text PDFIn bacteria, the twin-arginine translocation (Tat) pathway allows the export of folded proteins through the inner membrane. Proteins targeted to this system are synthesized with N-terminal signal peptides bearing a conserved twin-arginine motif. The Tat pathway is critical for many bacterial processes including pathogenesis and virulence.
View Article and Find Full Text PDFThe transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in , S-layer components in , and tooth tissue-degrading enzymes in the oral pathogen Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope.
View Article and Find Full Text PDFThe opportunistic pathogen Pseudomonas aeruginosa uses secretion systems to deliver exoproteins into the environment. These exoproteins contribute to bacterial survival, adaptation, and virulence. The Twin arginine translocation (Tat) export system enables the export of folded proteins into the periplasm, some of which can then be further secreted outside the cell.
View Article and Find Full Text PDFContact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT.
View Article and Find Full Text PDFProteins within a cell are localized into specific cellular compartments, allowing compartmentalization of distinct tasks. If we consider lipid bilayers as compartments, then gram-negative bacteria such as Pseudomonas aeruginosa can target proteins to five distinct locations: the cytoplasm, the inner membrane, the periplasm, the outer membrane, and the extracellular environment. In this chapter, we describe how the different compartments can be selectively isolated by a combination of centrifugation and disruption techniques.
View Article and Find Full Text PDFUnlabelled: Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) pathway is a prokaryotic protein targeting system dedicated to the transmembrane translocation of folded proteins. Substrate proteins are directed to the Tat translocase by signal peptides bearing a conserved SRRxFLK 'twin-arginine' motif. In Escherichia coli, most of the 27 periplasmically located Tat substrates are cofactor-containing respiratory enzymes, and many of these harbour a molybdenum cofactor at their active site.
View Article and Find Full Text PDFThe yjeE, yeaZ, and ygjD genes are highly conserved in the genomes of eubacteria, and ygjD orthologs are also found throughout the Archaea and eukaryotes. In this study, we have constructed conditional expression strains for each of these genes in the model organism Escherichia coli K12. We show that each gene is essential for the viability of E.
View Article and Find Full Text PDFThe Tat (twin arginine translocation) system transports folded proteins across bacterial and thylakoid membranes. The integral membrane proteins TatA, TatB, and TatC are the essential components of the Tat pathway in Escherichia coli. We demonstrate that formation of a stable complex between TatB and TatC does not require TatA or other Tat components.
View Article and Find Full Text PDFThe Tat protein export system serves to export folded proteins harboring an N-terminal twin arginine signal peptide across the cytoplasmic membrane. In this study, we have used gene expression profiling of Escherichia coli supported by phenotypic analysis to investigate how cells respond to a defect in the Tat pathway. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are defective in the integrity of their cell envelope because of the mislocalization of two amidases involved in cell wall metabolism (Ize, B.
View Article and Find Full Text PDFFormate dehydrogenase N (FDH-N) of Escherichia coli is a membrane-bound enzyme comprising FdnG, FdnH, and FdnI subunits organized in an (alphabetagamma)3 configuration. The FdnG subunit carries a Tat-dependent signal peptide, which localizes the protein complex to the periplasmic side of the membrane. We noted that substitution of the first arginine (R5) in the twin arginine signal sequence of FdnG for a variety of other amino acids resulted in a dramatic (up to 60-fold) increase in the levels of protein synthesized.
View Article and Find Full Text PDFEtpM of the enterohemorrhagic E. coli O157:H7 is a bitopic membrane protein of the type II protein secretion apparatus. There is a twin-arginine (RR) motif in front of its signal anchor, suggesting a Tat-dependent membrane targeting of EtpM.
View Article and Find Full Text PDFThe Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are highly defective in the integrity of their cell envelope. Here, we report the isolation, by transposon mutagenesis, of tat mutant strains that have their outer membrane integrity restored.
View Article and Find Full Text PDFArch Microbiol
December 2002
Tat- and Sec-targeting signal peptides are specific for the cognate Tat or Sec pathways. Using two reporter proteins, the specificity and convertibility of a Tat signal peptide were assessed in vivo. The specific substitutions by RK, KR and KK for the RR motif of the TorA signal peptide had no effect on the exclusive Tat-dependent export of colicin V (ColV).
View Article and Find Full Text PDFThe bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP).
View Article and Find Full Text PDF