It is consensus that clinically relevant antibiotic resistance genes have their origin in environmental bacteria, including the large pool of primarily benign species. Yet, for the vast majority of acquired antibiotic resistance genes, the original environmental host(s) has not been identified to date. Closing this knowledge gap could improve our understanding of how antimicrobial resistance proliferates in the bacterial domain and shed light on the crucial step of initial resistance gene mobilization in particular.
View Article and Find Full Text PDFWhen antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG.
View Article and Find Full Text PDFWith the global concerns on antibiotic resistance (AR) as a public health issue, it is pivotal to have data exchange platforms for studies on antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. For this purpose, the NORMAN Association is hosting the NORMAN ARB&ARG database, which was developed within the European project ANSWER. The present article provides an overview on the database functionalities, the extraction and the contribution of data to the database.
View Article and Find Full Text PDFWastewater surveillance for SARS-CoV-2 has been demonstrated to be a valuable tool in monitoring community-level virus circulation and assessing new outbreaks. It may become a useful tool in the early detection and response to future pandemics, enabling public health authorities to implement timely interventions and mitigate the spread of infectious diseases with the fecal excretion of their agents. It also offers a chance for cost-effective surveillance.
View Article and Find Full Text PDFFreshwater organisms are suitable models to study the fate of environmental pollutants. Due to their versatile and everyday use, many environmental pollutants such as triclocarban (TCC) or multi-walled carbon nanotubes (MWCNTs) enter environmental compartments very easily. TCC is known as a disinfectant and is declared as a highly aquatic toxicant.
View Article and Find Full Text PDFRiver microbial communities regularly act as the first barrier of defense against the spread of antimicrobial resistance genes (ARGs) that enter environmental microbiomes through wastewater. However, how the invasion dynamics of wastewater-borne ARGs into river biofilm communities will shift due to climate change with increasing average and peak temperatures remains unknown. Here, we aimed to elucidate the effects of increasing temperatures on the naturally occurring river biofilm resistome, as well as the invasion success of foreign ARGs entering through wastewater.
View Article and Find Full Text PDFAntibiotic resistance genes (ARGs) constitute emerging pollutants and pose serious risks to public health. Anthropogenic activities are recognized as the main driver of ARG dissemination in coastal regions. However, the distribution and dissemination of ARGs in Shenzhen Bay Basin, a typical megacity water environment, have been poorly investigated.
View Article and Find Full Text PDFDecentralised wastewater treatment is becoming a suitable strategy to reduce cost and environmental impact. In this research, the performance of two technologies treating black water (BW) and grey water (GW) fractions of urban sewage is carried out in a decentralised treatment of the wastewater produced in three office buildings. An Anaerobic Membrane Bioreactor (AnMBR) treating BW and a Hybrid preanoxic Membrane Bioreactor (H-MBR) containing small plastic carrier elements, treating GW were operated at pilot scale.
View Article and Find Full Text PDFEnvironmental microbiomes are constantly exposed to invasion events through foreign, antibiotic resistant bacteria that were enriched in the anthropic sphere. However, the biotic and abiotic factors, as well as the natural barriers that determine the invasion success of these invader bacteria into the environmental microbiomes are poorly understood. A great example of such invasion events are river microbial communities constantly exposed to resistant bacteria originating from wastewater effluents.
View Article and Find Full Text PDFProtists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g.
View Article and Find Full Text PDFThe environment is an important component in the emergence and transmission of antimicrobial resistance (AMR). Despite that, little effort has been made to monitor AMR outside of clinical and veterinary settings. Partially, this is caused by a lack of comprehensive reference data for the vast majority of environments.
View Article and Find Full Text PDFTrimethoprim (TMP) is a low-cost, widely prescribed antibiotic. Its effectiveness is increasingly challenged by the spread of genes coding for TMP-resistant dihydrofolate reductases: dfrA, and the lesser-known, evolutionarily unrelated dfrB. Despite recent reports of novel variants conferring high level TMP resistance (dfrB10 to dfrB21), the prevalence of dfrB is still unknown due to underreporting, heterogeneity of the analyzed genetic material in terms of isolation sources, and limited bioinformatic processing.
View Article and Find Full Text PDFSurveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.
View Article and Find Full Text PDFSelection for antibiotic resistance at very low antibiotic concentrations has been demonstrated for individual antibiotics in single species experiments. Furthermore, selection in these focal strains is reduced when taking place in complex microbial community context. However, in the environment, bacteria are rarely exposed to single, but rather complex mixtures of selective agents.
View Article and Find Full Text PDFAntibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs).
View Article and Find Full Text PDFThere is a clear need for global monitoring initiatives to evaluate the risks of antibiotic resistance genes (ARGs) towards human health. Therefore, not only ARG abundances within a given environment, but also their potential mobility, hence their ability to spread to human pathogenic bacteria needs to be quantified. We developed a novel, sequencing-independent method for assessing the linkage of an ARG to a mobile genetic element by statistical analysis of multiplexed droplet digital PCR (ddPCR) carried out on environmental DNA sheared into defined, short fragments.
View Article and Find Full Text PDFPredation defense is an important feature of predator-prey interactions adding complexity to ecosystem dynamics. Prey organisms have developed various strategies to escape predation which differ in mode (elude vs. attack), reversibility (inducible vs.
View Article and Find Full Text PDFBackground: As a widely used broad-spectrum antibiotic, chloramphenicol is prone to be released into environments, thus resulting in the disturbance of ecosystem stability as well as the emergence of antibiotic resistance genes. Microbes play a vital role in the decomposition of chloramphenicol in the environment, and the biotransformation processes are especially dependent on synergistic interactions and metabolite exchanges among microbes. Herein, the comprehensive chloramphenicol biotransformation pathway, key metabolic enzymes, and interspecies interactions in an activated sludge-enriched consortium were elucidated using integrated multi-omics and cultivation-based approaches.
View Article and Find Full Text PDFFreshwater grazers are suitable organisms to investigate the fate of environmental pollutants, such as weathered multi-walled carbon nanotubes (wMWCNTs). One key process is the uptake of ingested materials into digestive or absorptive cells. To address this, we investigated the localization of wMWCNTs in the intestinal tracts of the mud snail Lymnaea stagnalis (L.
View Article and Find Full Text PDFFreshwater ecosystems are important sources of drinking water and provide natural settings for the proliferation and dissemination of bacteria and antibiotic resistance genes (ARGs). However, the biogeographical patterns of ARGs in natural freshwaters and their relationships with the bacterial community at large scales are largely understudied. This is of specific importance because data on ARGs in environments with low anthropogenic impact is still very limited.
View Article and Find Full Text PDFAntibiotic resistance is a global health threat and consequently, there is a need to understand the mechanisms driving its emergence. Here, we hypothesize that genes and mutations under positive selection may contribute to antibiotic resistance. We explored wastewater E.
View Article and Find Full Text PDFTreated wastewater is a major pathway by which antibiotic resistance genes (ARG) enter aquatic ecosystems. However, knowledge gaps remain concerning the dissemination of specific ARG and their association with bacterial hosts. Here, we employed shotgun metagenomics to track ARG and taxonomic markers in river biofilms along a gradient of fecal pollution depicted by crAssphage signatures.
View Article and Find Full Text PDFMultiwalled carbon nanotubes (MWCNTs) regularly enter aquatic environments due to their ubiquity in consumer products and engineering applications. However, the effects of MWCNT pollution on the environmental microbiome are poorly understood. Here, we evaluated whether these carbon nanoparticles can elevate the spread of antimicrobial resistance by promoting bacterial plasmid transfer, which has previously been observed for copper nanomaterials with antimicrobial properties as well as for microplastics.
View Article and Find Full Text PDFThe spatiotemporal variation of several carbapenemase-encoding genes (CRGs) was investigated in the influent and effluent of municipal WWTPs, with or without hospital sewage input. Correlations among gene abundances, bacterial community composition, and wastewater quality parameters were tested to identify possible predictors of CRGs presence. Also, the possible role of wastewaters in mirroring clinical resistance is discussed.
View Article and Find Full Text PDF