Data processing forms an integral part of biomarker discovery and contributes significantly to the ultimate result. To compare and evaluate various publicly available open source label-free data processing workflows, we developed msCompare, a modular framework that allows the arbitrary combination of different feature detection/quantification and alignment/matching algorithms in conjunction with a novel scoring method to evaluate their overall performance. We used msCompare to assess the performance of workflows built from modules of publicly available data processing packages such as SuperHirn, OpenMS, and MZmine and our in-house developed modules on peptide-spiked urine and trypsin-digested cerebrospinal fluid (CSF) samples.
View Article and Find Full Text PDFWe present a new proteomics analysis pipeline focused on maximizing the dynamic range of detected molecules in liquid chromatography-mass spectrometry (LC-MS) data and accurately quantifying low-abundance peaks to identify those with biological relevance. Although there has been much work to improve the quality of data derived from LC-MS instruments, the goal of this study was to extend the dynamic range of analyzed compounds by making full use of the information available within each data set and across multiple related chromatograms in an experiment. Our aim was to distinguish low-abundance signal peaks from noise by noting their coherent behavior across multiple data sets, and central to this is the need to delay the culling of noise peaks until the final peak-matching stage of the pipeline, when peaks from a single sample appear in the context of all others.
View Article and Find Full Text PDFUnlabelled: Warp2D is a novel time alignment approach, which uses the overlapping peak volume of the reference and sample peak lists to correct misleading peak shifts. Here, we present an easy-to-use web interface for high-throughput Warp2D batch processing time alignment service using the Dutch Life Science Grid, reducing processing time from days to hours. This service provides the warping function, the sample chromatogram peak list with adjusted retention times and normalized quality scores based on the sum of overlapping peak volume of all peaks.
View Article and Find Full Text PDFMultidimensional chromatography coupled to mass spectrometry (LC(n)-MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an overview of the most important aspects of LC(n)-MS with respect to optimizing peak capacity and evaluate orthogonality. We review recent developments in LC(n)-MS to analyse proteomics samples from the analyst point of view and give an overview over methods and future developments to process LC(n)-MS data for comprehensive differential protein expression profiling.
View Article and Find Full Text PDFWe describe a platform for the comparative profiling of urine using reversed-phase liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit of detection (5.
View Article and Find Full Text PDF