Publications by authors named "Berend Denkena"

The formation of pathogenic multispecies biofilms in the human oral cavity can lead to implant-associated infections, which may ultimately result in implant failure. These infections are neither easily detected nor readily treated. Due to high complexity of oral biofilms, detailed mechanisms of the bacterial dysbiotic shift are not yet even fully understood.

View Article and Find Full Text PDF

Introduction: Modular hip implants enables a more precise adaptation of the prosthesis to the patient's anatomy. However, they also carry the risk of increased revision rates due to micromotion at the taper junction. In order to minimize this risk, one potential solution is to establish an adhesive bond between the metal taper junctions.

View Article and Find Full Text PDF

Wear of the ultra-high molecular-weight polyethylene (UHMWPE) component in total knee arthroplasty contributes to implant failure. It is often detected late, when patients experience pain or instability. Early monitoring could enable timely intervention, preventing implant failure and joint degeneration.

View Article and Find Full Text PDF

Polymers as biomaterials possess favorable properties, which include corrosion resistance, light weight, biocompatibility, ease of processing, low cost, and an ability to be easily tailored to meet specific applications. However, their inherent low X-ray attenuation, resulting from the low atomic numbers of their constituent elements, i.e.

View Article and Find Full Text PDF

Machining is an essential part of modern manufacturing. During machining, the wear of cutting tools increases, eventually impairing product quality and process stability. Determining when to change a tool to avoid these consequences, while still utilizing most of a tool's lifetime is challenging, as the tool lifetime can vary by more than 100% despite constant process parameters [1].

View Article and Find Full Text PDF

Laser-based thermoplastic automated fiber placement (TAFP) is nowadays mainly used to produce pure carbon fiber-reinforced plastic (CFRP) structures. This paper investigates the feasibility of a novel application: The deposition of thermoplastic prepreg tapes onto a thermoplastic foam for the production of thermoplastic sandwich structures. Therefore, simple deposition experiments of thermoplastic PEEK/CF prepreg tapes on a PEI closed-cell foam were carried out.

View Article and Find Full Text PDF

The need for rare resources, such as tungsten or cobalt, combined with the high energy requirements to produce cutting materials, is forcing research and development to work out environmentally friendly alternatives. Natural rocks could be an alternative since they are available in large quantities worldwide, have a potentially suitable property profile, and do not require energy-intensive processes to make them usable as cutting materials. However, there are only a few studies on the usability and suitability of natural rocks as cutting materials for machining processes.

View Article and Find Full Text PDF

Polycrystalline cubic boron nitride is a very hard material. Machining of this material is performed by grinding with diamond tools. Due to its high hardness, grinding tools are subjected to severe microscopic and macroscopic tool wear.

View Article and Find Full Text PDF

During metal cutting, high temperatures of several hundred-degree Celsius occur locally at the cutting edge, which greatly impacts tool wear and life. Not only the cutting parameters, but also the tool material's properties influence the arising cutting temperature which in turn alters the mechanical properties of the tool. In this study, the hardness and thermal conductivity of cemented tungsten carbides were investigated in the range between room temperature and 1000 °C.

View Article and Find Full Text PDF

Background: Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining.

View Article and Find Full Text PDF

Background: In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery.

Methods: ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate.

View Article and Find Full Text PDF

Magnesium alloys have been in the focus of research in recent years as degradable biomaterial. The purpose of this study was the biomechanical characterisation of MgCa0.8-screws.

View Article and Find Full Text PDF

Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.

Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry.

View Article and Find Full Text PDF

Introduction: To mimic the impressive mechanical behavior of natural ceramics for technical or biomedical applications, interest has been focused on nacre, a natural composite consisting of imbricated aragonite platelets embedded in a protein matrix. Nacre is an ideal model material for implants, since it possesses favorable strength and toughness properties compared to the component materials of which it is composed. The focus of the present study was to test standardized parameters which are good indicators of the material's suitability as an implant material.

View Article and Find Full Text PDF

A primary cause for revision operations of joint replacements is the implant loosening, due to immune reactions resulting from the agglomeration of polyethylene wear debris. Motivated by the successful application of bioceramic materials in hip joint prostheses, a trend towards the development of hard implant materials has occurred. Nonetheless in the area of total knee arthroplasty (TKA), modern efforts have still utilized polyethylene as the tibial-inlay joint component.

View Article and Find Full Text PDF