Background: The overprescription and misuse of classical antimicrobial compounds to treat gastrointestinal or systemic salmonellosis have been accelerating the surge of antibiotic-recalcitrant bacterial populations, posing a major public health challenge. Therefore, alternative therapeutic approaches to treat Salmonella infections are urgently required.
Objectives: To identify and characterize actinobacterial secreted compounds with inhibitory properties against the Salmonella enterica PhoP/PhoQ signal transduction system, crucial for virulence regulation.
The NF-κB transcription factor is involved in inflammation and cell proliferation, survival, and transformation. It is a heterodimer made of p50 or p52 and a member of the Rel family of proteins. p50 and p52 are derived from limited ubiquitin- and proteasome-mediated proteolytic processing of the larger precursors p105 and p100, respectively.
View Article and Find Full Text PDFA promising approach in cancer therapy is to find ligands that directly bind ubiquitin (Ub) chains. However, finding molecules capable of tightly and specifically binding Ub chains is challenging given the range of Ub polymer lengths and linkages and their subtle structural differences. Here, we use total chemical synthesis of proteins to generate highly homogeneous Ub chains for screening against trillion-member macrocyclic peptide libraries (RaPID system).
View Article and Find Full Text PDFOne of the enigmas in the ubiquitin (Ub) field is the requirement for a poly-Ub chain as a proteasomal targeting signal. The canonical chain appears to be longer than the distance between the two Ub-binding proteasomal receptors. Furthermore, genetic manipulation has shown that one receptor subunit is sufficient, which suggests that a single Ub can serve as a degradation signal.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
The "canonical" proteasomal degradation signal is a substrate-anchored polyubiquitin chain. However, a handful of proteins were shown to be targeted following monoubiquitination. In this study, we established-in both human and yeast cells-a systematic approach for the identification of monoubiquitination-dependent proteasomal substrates.
View Article and Find Full Text PDFFAT10 is a ubiquitin-like protein made of two tandem, head-to-tail, ubiquitin domains. It is known to covalently modify proteins in a mechanism similar, though not identical, to that of other ubiquitin-like proteins. The lack of known physiological substrates covalently conjugated by the protein made it difficult to unravel its biological functions.
View Article and Find Full Text PDFFAT10 is a ubiquitin-like protein modifier that is induced in vertebrates following certain inflammatory stimuli. Its functions and the repertoire of its target substrates have remained elusive. In contrast to ubiquitin, its cellular abundance is tightly controlled by both transcriptional and posttranslational regulation, and it was reported to be rapidly degraded by the proteasome.
View Article and Find Full Text PDFWe report that MDM2, a negative regulator of p53, can bind to EBNA-5. Using GST pull-down assay, immunoprecipitation, surface plasmon resonance and immunostaining of lymphoblastoid cells, we found that trimolecular complexes are formed between EBNA-5, MDM2 and p53, where MDM2 serves as a bridge. The EBNA-5 binding to MDM2 counteracted destabilizing effect of the latter on the p53.
View Article and Find Full Text PDFA growing number of proteins, including the myogenic transcription factor MyoD, are targeted for proteasomal degradation after N-terminal ubiquitination (NTU) where the first ubiquitin moiety is conjugated to the N-terminal residue rather than to an internal lysine. NTU might be essential in targeting both lysine-containing and naturally occurring lysine-less proteins such as p16(INK4a) and p14(ARF); however, the mechanisms that underlie this process are largely unknown. Specifically, the recognition motif(s) in the target substrates and the ubiquitin ligase(s) that catalyze NTU are still obscure.
View Article and Find Full Text PDFThe p53 protein is subject to Mdm2-mediated degradation by the ubiquitin-proteasome pathway. This degradation requires interaction between p53 and Mdm2 and the subsequent ubiquitination and nuclear export of p53. Exposure of cells to DNA damage results in the stabilization of the p53 protein in the nucleus.
View Article and Find Full Text PDFIn most cases, target proteins of the ubiquitin system are completely degraded. In several exceptions, such as the first step in the activation of the transcriptional regulator NF-kappaB, the substrate, the precursor protein p105, is processed in a limited manner to yield the active subunit p50. p50 is derived from the N-terminal domain of p105, whereas the C-terminal domain is degraded.
View Article and Find Full Text PDFProcessing of the p105 precursor to form the active subunit p50 of the NF-kappaB transcription factor is a unique case in which the ubiquitin system is involved in limited processing rather than in complete destruction of the target substrate. A glycine-rich region along with a downstream acidic domain have been demonstrated to be essential for processing. Here we demonstrate that following IkappaB kinase (IkappaK)-mediated phosphorylation, the C-terminal domain of p105 (residues 918-934) serves as a recognition motif for the SCF(beta)(-TrCP) ubiquitin ligase.
View Article and Find Full Text PDFThe last step in the activation of the transcription factor NF-kappaB is signal-induced, ubiquitin- and proteasome-mediated degradation of the inhibitor IkappaBalpha. Although most of the components involved in the activation and degradation pathways have been identified, the ubiquitin carrier proteins (E2) have remained elusive. Here we show that the two highly homologous members of the UBCH5 family, UBCH5b and UBCH5c, and CDC34/UBC3, the mammalian homolog of yeast Cdc34/Ubc3, are the E2 enzymes involved in the process.
View Article and Find Full Text PDFWe have previously shown that the degradation of c-myc and N-myc in vitro is mediated by the ubiquitin system. However, the role of the system in targeting the myc proteins in vivo and the identity of the conjugating enzymes and possible ancillary proteins involved has remained obscure. Here we report that the degradation of the myc proteins in cells is inhibited by lactacystin and MG132, two inhibitors of the 20S proteasome.
View Article and Find Full Text PDFBy means of differential RNA display, we have isolated a cDNA corresponding to transcripts that are down-regulated upon differentiation of the goblet cell-like HT-29-M6 human colon carcinoma cell line. These transcripts encode proteins originally identified as CROC-1 on the basis of their capacity to activate transcription of c-fos. We show that these proteins are similar in sequence, and in predicted secondary and tertiary structure, to the ubiquitin-conjugating enzymes, also known as E2.
View Article and Find Full Text PDFDegradation of a protein via the ubiquitin system involves two discrete steps, signaling by covalent conjugation of multiple moieties of ubiquitin and degradation of the tagged substrate. Conjugation is catalyzed via a three-step mechanism that involves three distinct enzymes that act successively: E1, E2, and E3. The first two enzymes catalyze activation of ubiquitin and transfer of the activated moiety to E3, respectively.
View Article and Find Full Text PDFDegradation of a protein via the ubiquitin system involves two discrete steps, conjugation of ubiquitin to the substrate and degradation of the adduct. Conjugation follows a three-step mechanism. First, ubiquitin is activated by the ubiquitin-activating enzyme, E1.
View Article and Find Full Text PDFOrnithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is an extremely short-lived protein. This attribute is important for the regulation of the activity of the enzyme and implies that the mechanisms involved in its degradation play an important role in the control of the cellular processes in which the enzyme is involved. Recently, it has been shown that ODC is degraded by the 26S proteasome complex in a process that requires antizyme, but not ubiquitin.
View Article and Find Full Text PDFThe wild-type tumor suppressor protein p53 is a short-lived protein that plays important roles in regulation of cell cycle, differentiation, and survival. Mutations that inactivate or alter the tumor suppressor activity of the protein seem to be the most common genetic change in human cancer and are frequently associated with changes in its stability. The ubiquitin system has been implicated in the degradation of p53 both in vivo and in vitro.
View Article and Find Full Text PDFThe tumor suppressor protein p53 is extremely unstable in most cell lines. In contrast, many mutant and oncogenic species of the protein are stable. The degradation of p53 in vivo requires metabolic energy; however, the proteolytic system(s) involved have not been identified.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 1991
Nuclear oncoproteins are among the most rapidly degraded intracellular proteins. Previous work has implicated the ubiquitin-mediated proteolytic system in the turnover of short-lived intracellular proteins. In the present study, we have evaluated the potential role of the ubiquitin system in the degradation of the specific nuclear oncoproteins encoded by the N-myc, c-myc, c-fos, p53 and E1A genes.
View Article and Find Full Text PDF