Recent technological advances have allowed the development of a new generation of nanostructured materials, such as those displaying both mechano-bactericidal activity and substrata that favor the growth of mammalian cells. Nanomaterials that come into contact with biological media such as blood first interact with proteins, hence understanding the process of adsorption of proteins onto these surfaces is highly important. The Random Sequential Adsorption (RSA) model for protein adsorption on flat surfaces was modified to account for nanostructured surfaces.
View Article and Find Full Text PDFThe protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed.
View Article and Find Full Text PDF