Phytophthora nicotianae and Ralstonia solanacearum are two of the most important pathogens affecting tobacco worldwide. Greater insight regarding genetic systems controlling resistance to these two soilborne pathogens, as well as identification of DNA markers associated with genomic regions controlling this resistance, could aid in variety development. An evaluation of 50 historical tobacco lines revealed a high positive correlation between resistances to the two pathogens, preliminarily suggesting that some genomic regions may confer resistance to both pathogens.
View Article and Find Full Text PDFIn the tobacco plant, nicotine N-demethylase enzymes (NND) belonging to the cytochrome P450 family catalyse the conversion of nicotine to nornicotine, the precursor of the carcinogenic tobacco-specific N-nitrosamine, N-nitrosonornicotine. To date three demethylase genes, namely CYP82E4, CYP82E5 and CYP82E10, have been shown to be involved in this process, while the related CYP82E2 and CYP82E3 genes are not functional. We have identified a further gene named CYP82E21 encoding a putative nicotine N-demethylase closely related to the CYP82E genes.
View Article and Find Full Text PDF