A series of 4,5-di-substituted acridones have been designed and synthesized. Several compounds show high affinity for telomeric G-quadruplex DNA in classical and competition FRET assays, together with low duplex DNA affinity, although they do not show activity in a telomerase assay or evidence of telomere shortening. They have low toxicity against a panel of cancer cell lines and a normal human fibroblast line, and produce potent senescence-based long-term growth arrest in the MCF7 and A549 cancer cell lines.
View Article and Find Full Text PDFTelomerase and telomere maintenance are emerging targets for the treatment of human cancers. We report here on the targeting of the telomere-telomerase complex with a series of small molecules based on an acridine platform. A series of 3,6-bisamidoacridines with extended 9-anilino sidechains were designed and synthesised as potential telomeric G-quadruplex DNA (G4) interacting compounds.
View Article and Find Full Text PDFWe report here the synthesis and evaluation for telomerase-inhibitory and quadruplex DNA binding properties of several rationally-designed quindoline analogues, substituted at the 2- and 7- positions. The ability of these compounds to interact with and stabilise an intramolecular G-quadruplex DNA against increases in temperature was evaluated by a fluorescence-based (FRET) melting assay. The resulting T(m) values were found to correlate with their potency for telomerase inhibition, as measured in an in vitro telomerase TRAP assay.
View Article and Find Full Text PDF