Autism spectrum disorders (ASDs) are perhaps the most severe, intractable and challenging child psychiatric disorders. They are complex, pervasive and highly heterogeneous and depend on multifactorial neurodevelopmental conditions. Although the pathogenesis of autism remains unclear, it revolves around altered neurodevelopmental patterns and their implications for brain function, although these cannot be specifically linked to symptoms.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age.
View Article and Find Full Text PDFDysbiosis secondary to environmental factors, including dietary patterns, antibiotics use, pollution exposure, and other lifestyle factors, has been associated to many non-infective chronic inflammatory diseases. Autism spectrum disorder (ASD) is related to maternal inflammation, although there is no conclusive evidence that affected individuals suffer from systemic low-grade inflammation as in many psychological and psychiatric diseases. However, neuro-inflammation and neuro-immune abnormalities are observed within ASD-affected individuals.
View Article and Find Full Text PDFThe limitations of the currently available treatments for chronic neuropathic pain highlight the need for safer and more effective alternatives. The authors carried out a focused review using a systems biology approach to integrate the complex mechanisms of nociception and neuropathic pain, and to decipher the effects of nitrous oxide (NO) on those pathways, beyond the known effect of NO on N-methyl-D-aspartate receptors. This review identified a number of potential mechanisms by which NO could impact the processes involved in peripheral and central sensitization.
View Article and Find Full Text PDFThe high demand for new biomaterials makes synthesis of polyhydroxyalkanoates (PHA) in plants an interesting and desirable achievement. Production of polymers in plants is an example of application of biotechnology for improving the properties of plants, e.g.
View Article and Find Full Text PDFIt is becoming generally accepted that the current diagnostic system often guarantees, rather than diminishes, disease heterogeneity. In effects, syndrome-dominated conceptual thinking has become a barrier to understanding the biological causes of complex, multifactorial diseases characterized by clinical and therapeutic heterogeneity. Furthermore, not only is the flood of currently available medical and biological information highly heterogeneous, it is also often conflicting.
View Article and Find Full Text PDFConjugated linoleic acids (CLAs) have been found to have beneficial effects on human health when used as dietary supplements. However, their availability is limited because pure, chemistry-based production is expensive, and biology-based fermentation methods can only create small quantities. In an effort to enhance microbial production of CLAs, four genetically modified strains of the oleaginous yeast Yarrowia lipolytica were generated.
View Article and Find Full Text PDFtA novel approach to trigger lipid accumulation and/or citrate production in vivo through the inactivation of the 2-methyl-citrate dehydratase in Yarrowia lipolytica was developed. In nitrogen-limited cultures with biodiesel-derived glycerol utilized as substrate, the phd1 mutant (JMY1203) produced 57.7 g/L of total citrate, 1.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2014
Although there are numerous oleochemical applications for ricinoleic acid (RA) and its derivatives, their production is limited and subject to various safety legislations. In an effort to produce RA from alternative sources, we constructed a genetically modified strain of the oleaginous yeast Yarrowia lipolytica. This strain is unable to perform β-oxidation and is invalidated for the native triacylglycerol (TAG) acyltransferases (Dga1p, Dga2p, and Lro1p) and the ∆12 desaturase (Fad2p).
View Article and Find Full Text PDFBiochim Biophys Acta
September 2013
Eukaryotes store lipids in a specialised organelle, the lipid body (LB), mainly as triglycerides (TAGs). Both the rates of synthesis and degradation contribute to the control of the accumulation of TAGs. The synthesis of TAGs in yeasts has been well documented, especially in the model yeast Saccharomyces cerevisiae and in the oleaginous yeast Yarrowia lipolytica.
View Article and Find Full Text PDFIn Yarrowia lipolytica, targeted gene replacement occurs only with long length (1 kb) homologous flanking fragments, as this yeast preferentially uses the non-homologous end-joining mechanism (NHEJ) for DNA repair over homologous recombination (HR). To improve the frequency of HR, we identified and disrupted the KU70 and KU80 genes responsible for double strand break repair in the NHEJ pathway in Y. lipolytica.
View Article and Find Full Text PDFWe previously developed a fermentation protocol for lipid accumulation in the oleaginous yeast Y. lipolytica. This process was used to perform transcriptomic time-course analyses to explore gene expression in Y.
View Article and Find Full Text PDFTriacylglycerols (TAG) and steryl esters (SE) are the principal storage lipids in all eukaryotic cells. In yeasts, these storage lipids accumulate within special organelles known as lipid bodies (LB). In the lipid accumulation-oriented metabolism of the oleaginous yeast Yarrowia lipolytica, storage lipids are mostly found in the form of TAG, and only small amounts of SE accumulate.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
May 2011
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However, commercialization of microbial oils with similar composition and energy value to plant and animal oils could have many advantages, such as being non-competitive with food, having shorter process cycle and being independent of season and climate factors. This review focuses on the ongoing research on different oleaginous yeasts producing high added value lipids and on the prospects of such microbial oils to be used in different biotechnological processes and applications.
View Article and Find Full Text PDFThe yeast Yarrowialipolytica has developed very efficient mechanisms for breaking down and using hydrophobic substrates. It is considered an oleaginous yeast, based on its ability to accumulate large amounts of lipids. Completion of the sequencing of the Y.
View Article and Find Full Text PDFThe oleaginous yeast Yarrowia lipolytica is known to inhabit various lipid-containing environments. One of the most striking features in this yeast is the presence of several multigene families involved in the metabolic pathways of hydrophobic substrate utilization. The complexity and the multiplicity of these genes give Y.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2008
A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y.
View Article and Find Full Text PDFIn a previous work, we presented evidence for the presence of a protein encoded by At5g50600 in oil bodies (OBs) from Arabidopsis thaliana [P. Jolivet, E. Roux, S.
View Article and Find Full Text PDF