The design of eco-friendly and renewable energy infrastructure is highly desirable to advance the global energy landscape. Phase-change materials (PCMs) are used to mitigate intermittency issues and reversibly store high densities of thermal energy in the form of heat during the phase transition process and provide ample potential for the advancement of renewable energy infrastructure. However, the leakage and low thermal stability of pristine PCMs along with the complicated synthesis strategies and environmental issues of the supporting materials cause significant drawbacks, thereby requiring a sustainable confining agent.
View Article and Find Full Text PDFThe fundamental requirements for thermal comfort along with the unbalanced growth in the energy demand and consumption worldwide have triggered the development and innovation of advanced materials for high thermal-management capabilities. However, continuous development remains a significant challenge in designing thermally robust materials for the efficient thermal management of industrial devices and manufacturing technologies. The notable achievements thus far in nanopolyhybrid design technologies include multiresponsive energy harvesting/conversion (e.
View Article and Find Full Text PDFAccording to fire accident statistics, fires in buildings are increasing. The flame-retardant performance of insulation materials is considered an important factor for preventing the spread of fire and ensuring evacuation. This study evaluated the flame-retardant performance and combustion characteristics of four types of organic thermal insulation used as core materials in sandwich panels.
View Article and Find Full Text PDFPhase-change materials (PCMs) plays a significant role in energy conservation and thermal management systems. However, excessive seepage and insufficient thermal conductivity of pristine PCMs are restricting its real-world applications. Herein, "anisotropic-like" biochar with favorable pore characteristics is designed by combining it with chitosan for dodecane encapsulation.
View Article and Find Full Text PDFAs the demand for coffee has increased, by-product disposal has become a challenge to solve. Many studies are being conducted on how to use coffee waste as building materials to recycle it. In this study, the thermal performance and acoustic performance of a composite developed using bio-based microencapsulated phase change material (MPCM) and coffee waste were evaluated, and the composite was applied as building material.
View Article and Find Full Text PDFPhase change composites are in high demand in thermal management systems. Various supporting materials, including nanocomposites, have been employed to develop shape-stable phase change materials (PCMs). As the reliability of most composite materials has mostly been studied right after the preparation with specific thermal cycling measurements, it is difficult to analyze the long-term leakage-resistance capability and energy retention capacity.
View Article and Find Full Text PDFModern people spend most of their time indoors. Therefore, controlling indoor air quality is one of the most important factors for health. The indoor fine dust concentration is affected by the outdoor fine dust concentration.
View Article and Find Full Text PDFThis study suggests a new perspective of biochar as a building material that improve not only for the strength but also hygrothermal properties. Biochar has a high porosity and surface area created by pyrolysis. It can be suitably used as a porous material because porous materials are used by incorporating into building materials for improving hygrothermal performance in the construction sector.
View Article and Find Full Text PDFTo obtain high thermal performance composite phase change materials (PCMs), various other supporting materials have been utilized to encapsulate organic PCMs. In this study, four carbon materials (biochar, activated carbon, carbon nanotubes, and expanded graphite) were introduced to support heptadecane. The composite PCMs were designed using vacuum impregnation techniques.
View Article and Find Full Text PDFWood is a sustainable resource and building material. It provides an excellent response to climate change and has excellent insulation performance. However, structural defects may occur due to decay from moisture, resulting in poor dimensional stability.
View Article and Find Full Text PDFThe increase in coffee consumption has led to increased production of coffee waste. Methods to recycle coffee waste are constantly being researched. Coffee powder is a porous material that can effectively be used to absorb sound.
View Article and Find Full Text PDFTo improve the indoor air quality of apartments in Korea, a toluene adsorptive paint was manufactured and tested for its efficiency to remove the indoor toluene released from wallpaper adhesives. The toluene adsorptive paint was prepared by blending activated carbon and inorganic binder, and the pore characteristics and chemical functional groups of the activated carbon were analyzed to determine whether the micropores and surface functionalities of activated carbon affected toluene adsorption. Toluene adsorption performance of the toluene adsorptive paint was confirmed through static and verification experiments.
View Article and Find Full Text PDFPleasant interior space is essential for modern people who spend considerably more time in the buildings than they did in the past. To achieve this, one aspect includes an ambient temperature that maintains the thermal equilibrium of the human body. The construction of wood framed buildings is becoming increasingly popular worldwide, and there have been recent trends toward constructing high-rise wooden houses.
View Article and Find Full Text PDF