Objective: The objective of this research is to enhance pneumonia detection in chest X-rays by leveraging a novel hybrid deep learning model that combines Convolutional Neural Networks (CNNs) with modified Swin Transformer blocks. This study aims to significantly improve diagnostic accuracy, reduce misclassifications, and provide a robust, deployable solution for underdeveloped regions where access to conventional diagnostics and treatment is limited.
Methods: The study developed a hybrid model architecture integrating CNNs with modified Swin Transformer blocks to work seamlessly within the same model.
Brain tumors are widely recognized as the primary cause of cancer-related mortality globally, necessitating precise detection to enhance patient survival rates. The early identification of brain tumor is presented with significant challenges in the healthcare domain, necessitating the implementation of precise and efficient diagnostic methodologies. The manual identification and analysis of extensive MRI data are presented as a challenging and laborious task, compounded by the importance of early tumor detection in reducing mortality rates.
View Article and Find Full Text PDF