Increasing scRNA-seq data in cardiovascular research have substantially improved our knowledge on the development of the cardiovascular system and the mechanisms underlying cardiovascular diseases. However, the single-cell transcriptome datasets were dispersed in literature and no resource for cardiovascular systems and diseases. Here, we constructed an organized resource CardioAtlas, which provides comprehensive analysis results for > 1,929,000 cells in 27 human data sets and > 1,088,000 cells in 39 mouse data sets.
View Article and Find Full Text PDFCardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms.
View Article and Find Full Text PDFArteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus.
View Article and Find Full Text PDFTranslational control is crucial for protein production in various biological contexts. Here, we use Ribo-seq and RNA-seq to show that genes related to oxidative phosphorylation are translationally downregulated during heart regeneration. We find that Nat10 regulates the expression of Uqcr11 and Uqcrb mRNAs in mouse and human cardiomyocytes.
View Article and Find Full Text PDFMammalian heart is capable to regenerate almost completely early after birth through endogenous cardiomyocyte proliferation. However, this regenerative capacity diminishes gradually with growth and is nearly lost in adulthood. Cannabidiol (CBD) is a major component of cannabis and has various biological activities to regulate oxidative stress, fibrosis, inflammation, and cell death.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play widespread roles in various processes. However, there is still limited understanding of the precise mechanisms through which they regulate early stage cardiomyocyte differentiation. In this study, we identified a specific lncRNA called , which is transcribed from a bidirectional promoter of LIM Homeobox 1 (LHX1) gene.
View Article and Find Full Text PDFSignal Transduct Target Ther
June 2023
While acute Coronavirus disease 2019 (COVID-19) affects the cardiovascular (CV) system according to recent data, an increased CV risk has been reported also during long-term follow-up (FU). In addition to other CV pathologies in COVID-19 survivors, an enhanced risk for arrhythmic events and sudden cardiac death (SCD) has been observed. While recommendations on post-discharge thromboprophylaxis are conflicting in this population, prophylactic short-term rivaroxaban therapy after hospital discharge showed promising results.
View Article and Find Full Text PDFIntroduction: Cardiovascular events are common in COVID-19. While the use of anticoagulation during hospitalization has been established in current guidelines, recommendations regarding antithrombotic therapy in the post-discharge period are conflicting.
Methods: To investigate this issue, we conducted a retrospective follow-up (393 ± 87 days) of 1,746 consecutive patients, hospitalized with and surviving COVID-19 pneumonia at a single tertiary medical center between April and December 2020.
Aims: While COVID-19 affects the cardiovascular system, the potential clinical impact of cardiovascular biomarkers on predicting outcomes in COVID-19 patients is still unknown. Therefore, to investigate this issue we analyzed the prognostic potential of cardiac biomarkers on in-hospital and long-term post-discharge mortality of patients with COVID-19 pneumonia.
Methods: Serum soluble ST2, VCAM-1, and hs-TnI were evaluated upon admission in 280 consecutive patients hospitalized with COVID-19-associated pneumonia in a single, tertiary care center.
Introduction: The principal voltage-gated Na channel, Na1.5 governs heart excitability and conduction. Na1.
View Article and Find Full Text PDFPhotobiomodulation (PBM) has emerged as an alternative therapy involved in modulating a variety of biological effects. In this study, we verified whether PBM can affect cardiac physiological activity in mice through noninvasive irradiation using light-emitting diodes at a wavelength of 630 nm (LED-Red). We found that the PBM involved in regulating the repair of injured myocardium is wavelength-limited.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2022
Methyltransferase-like 3 (Mettl3) is a component of methyltransferase complex that mediates mA modification of RNAs, and participates in multiple biological processes. However, the role of Mettl3 in cardiac electrophysiology remains unknown. This study aims to explore the ventricular arrhythmia susceptibility of Mettl3 mice and the underlying mechanisms.
View Article and Find Full Text PDFCardiovascular diseases such as myocardial infarction (MI) is a major contributor to human mortality and morbidity. The mammalian adult heart almost loses its plasticity to appreciably regenerate new cardiomyocytes after injuries, such as MI and heart failure. The neonatal heart exhibits robust proliferative capacity when exposed to varying forms of myocardial damage.
View Article and Find Full Text PDFBackground: J-waves represent a common finding in routine ECGs (5-6%) and are closely linked to ventricular tachycardias. While arrhythmias and non-specific ECG alterations are a frequent finding in COVID-19, an analysis of J-wave incidence in acute COVID-19 is lacking.
Methods: A total of 386 patients consecutively, hospitalized due to acute COVID-19 pneumonia were included in this retrospective analysis.
Mol Ther Nucleic Acids
December 2021
N6-methyladenosine (mA), as the most abundant modification of mammalian messenger RNAs, is essential for tissue development and pathogenesis. However, the biological significance of mA methylation in cardiac differentiation and development remains largely unknown. Here, we identify that the downregulation of mA demethylase ALKBH5 is responsible for the increase of mA methylation and cardiomyocyte fate determination of human embryonic stem cells (hESCs) from mesoderm cells (MESs).
View Article and Find Full Text PDFAims: N6-Methyladenosine (mA), one of the important epigenitic modifications, is very commom in messenger RNAs (mRNAs) of eukaryotes, and has been involved in various diseases. However, the role of mA modification in heart regeneration after injury remains unclear. The study was conducted to investigate whether targeting methyltransferase-like 3 (METTL3) could replenish the loss of cardiomyocytes (CMs) and improve cardiac function after myocardial infarction (MI).
View Article and Find Full Text PDFOxid Med Cell Longev
January 2022
Myocardial infarction refers to myocardial necrosis caused by acute or persistent coronary ischemia and hypoxia. It is considered to be one of the significant crises threatening human health in the world. Following myocardial infarction, collagen gradually replaces the original tissue due to the loss of many cardiomyocytes, myocardial contractile function decreases, and myocardial fibrosis eventually leads to heart failure.
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common primary malignant bone tumour in adolescence. Lately, light-emitting diodes (LED)-based therapy has emerged as a new promising approach for several diseases. However, it remains unknown in human OS.
View Article and Find Full Text PDFACE2 has long been known as an injury protective protein, which can protect against a variety of organ damage such as the heart, liver, kidney, and lung. Especially in cardiovascular diseases, as a negative regulator of RAAS, ACE2 is an extremely important protective factor that mainly plays a role by converting Ang II to Ang-(1-7). Nevertheless, with the recent outbreak of COVID-19, it is exposed that another identity of ACE2 is the entry receptor for SARS-CoV-2, which previously serves as the entry receptor for SARS.
View Article and Find Full Text PDF