Publications by authors named "Benyuan Cheng"

High pressure induces dramatic changes and novel phenomena in condensed volatiles that are usually not preserved after recovery from pressure vessels. Here we report a process that pressurizes volatiles into nanopores of type 1 glassy carbon precursors, converts glassy carbon into nanocrystalline diamond by heating and synthesizes free-standing nanostructured diamond capsules (NDCs) capable of permanently preserving volatiles at high pressures, even after release back to ambient conditions for various vacuum-based diagnostic probes including electron microscopy. As a demonstration, we perform a comprehensive study of a high-pressure argon sample preserved in NDCs.

View Article and Find Full Text PDF

Second-harmonic generation (SHG) is a kind of nonlinear optical phenomenon which has been widely used in optical devices, and factors influencing its signal are very complex. Here, taking advantage of excellent structural designability and overcoming the limitations of various coordinations of lanthanide metals, for the first time a series of lanthanide metal-organic frameworks (Ln-MOFs) with one particular ligand were synthesized and structurally characterized to study the interference of the SHG signal. The optical performance including single-photon fluorescence and SHG was collected and analyzed.

View Article and Find Full Text PDF

High-entropy alloys (HEAs) as a new class of alloy have been at the cutting edge of advanced metallic materials research in the last decade. With unique chemical and topological structures at the atomic level, HEAs own a combination of extraordinary properties and show potential in widespread applications. However, their phase stability/transition, which is of great scientific and technical importance for materials, has been mainly explored by varying temperature.

View Article and Find Full Text PDF

Nano/submicro vanadium dioxide rods in monoclinic phase (VO2 (M)) were synthesized through hydrothermal reaction combined with subsequent calcinations. The morphology and structure of samples were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The average diameter of VO2 (M) dioxide rods from 210 nm to 1 μm were successfully controlled by adjusting the synthesis conditions including the concentration of Vanadium pentoxide (V2O5) solution and the molar ratio of V2O5 and oxalic acid.

View Article and Find Full Text PDF