Publications by authors named "Benyong Chen"

In digital holographic microscopy (DHM), achieving large field of view (FOV) imaging while maintaining high resolution is critical for quantitative phase measurements of biological cell tissues and micro-nano structures. We present a quantitative phase image stitching guided by reconstructed intensity images in one-shot double FOV multiplexed DHM. Double FOVs are recorded simultaneously through frequency division multiplexing; intensity feature pairs are accurately extracted by multi-algorithm fusion; aberrations and non-common baselines are effectively corrected by preprocessing.

View Article and Find Full Text PDF

In multi-heterodyne interferometry, the non-ambiguous range (NAR) and measurement accuracy are limited by the generation of synthetic wavelengths. In this paper, we propose a multi-heterodyne interferometric absolute distance measurement based on dual dynamic electro-optic frequency combs (EOCs) to realize high-accuracy distance measurement with large scale. The modulation frequencies of the EOCs are synchronously and quickly controlled to perform dynamic frequency hopping with the same frequency variation.

View Article and Find Full Text PDF

Frequency sweeping interferometry with reference interferometer based on sinusoidal phase modulating technique is proposed in this paper for absolute distance measurement. With the frequency of the external cavity diode laser (ECDL) swept continuously in sinusoidal, a HeNe laser was employed to monitor the drifts of the target and the reference length, and influences caused by drifts during the measurement were compensated in real time. Sinusoidal phase modulation with non-overlapping frequencies were applied to the two laser lights individually by two electro-optic modulators (EOM), and the interference phases corresponding to the two laser lights were extracted simultaneously using the phase generated carrier (PGC) demodulation based on frequency-division multiplex technique.

View Article and Find Full Text PDF

Phase-shifting digital holography (PSDH) can effectively remove the zero-order term and twin image in on-axis holography, but the phase-shifting error deteriorates the quality of reconstructed object images. In this paper, accurate PSDH with an electro-optic modulator (EOM) is proposed. The EOM is used to generate the required phase shift of on-axis digital holography, and the required phase shift is precisely measured with orthogonal detection of a homodyne interferometer and controlled with proportional-integral-derivative feedback in real time.

View Article and Find Full Text PDF

In off-axis digital holography, spatial filtering is a key problem limiting the quality of reconstructed image, especially in the case of spurious spectrum generated by coherent noise in the hologram spectrum. In this paper, a new spatial filtering method with spurious spectrum elimination is proposed. Side band centering judgment is firstly implemented to locate the center point of the +1 term in the hologram spectrum.

View Article and Find Full Text PDF

To eliminate the nonlinear error of phase generated carrier (PGC) demodulation in sinusoidal phase modulating interferometer (SPMI), an active linearized PGC demodulation with fusion of differential-and-cross-multiplying (PGC-DCM) and the arctangent (PGC-Arctan) schemes is proposed. In this method, the periodic integer multiple of π (π-integer phases) of PGC-Arctan without nonlinear error and the corresponding PGC-DCM results recorded at the same time are fused to obtain a calibration coefficient for PGC-DCM demodulation. Combining the accurate π-integer phases of PGC-Arctan and the calibrated fractional phase in the range of π of PGC-DCM, a linearized PGC demodulation result can be achieved, effectively eliminating the nonlinear error caused by drifts of phase demodulation depth (m) and carrier phase delay (θ).

View Article and Find Full Text PDF

Absolute distance measurement with laser interferometry has the advantages of high precision and traceability to the definition of meter but its accuracy is primarily limited by the phase demodulation. Among kinds of absolute distance interferometric measurements, the multi-wavelength interferometry is widely used but seriously limited by the generation of suitable synthetic wavelength and the stability of adopted synthetic wavelength. Inspired by the mechanical lever, we hereby establish a principle of laser interferometric wavelength leverage (LIWL) for absolute distance measurement.

View Article and Find Full Text PDF

A three-degrees-of-freedom measurement system based on the Faraday effect is proposed for simultaneously measuring two-dimensional straightness errors and their position. Thanks to the Faraday effect of the Faraday rotator, the direction of a linearly polarized beam can be changed by 90° when the linearly polarized beam passes through the same Faraday rotator back and forth twice. A novel optical configuration is designed that can integrate the interferometry and position-sensitive detection technology ingeniously and put their advantages together.

View Article and Find Full Text PDF

The tilting error of the measuring reflector moving with the measured object influences the accuracy of displacement measurement in laser interferometers. To solve this problem, a phase modulating homodyne interferometer with tilting error compensation is proposed for precision displacement measurement. In this interferometer, the displacement and tilting angle of the measured object are obtained simultaneously by differentially processing the phase changes of four interference signals detected with an integrated four-photodetector, and the obtained tilting angle is used to compensate its influence on the displacement result.

View Article and Find Full Text PDF

Wrinkling patterns are widely observed in nature and can be used in many high-tech applications such as microfluidic channel, self-assembly ordered microstructures and improved adhesives. In order to use the wrinkling patterns for these applications, it is necessary to precisely control the formation and geometry of the wrinkles. In this paper, we investigate the localized wrinkling of a stiff film/compliant substrate system subjected to a thrust force with a controllable micro-probe.

View Article and Find Full Text PDF

A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail.

View Article and Find Full Text PDF

A sinusoidal phase modulating absolute distance measurement (ADM) interferometer combining frequency-sweeping interferometry (FSI) and multi-wavelength interferometry (MWI) is proposed in this paper. The swept frequency in FSI and the wavelengths for MWI are calibrated by an optical frequency comb, so the distance measurement can be directly traced back to the SI definition of a meter. With a simple optical structure, an ADM interferometer consisting of a measurement interferometer and a monitor interferometer is constructed without polarization optics.

View Article and Find Full Text PDF

A novel signal processing method based on phase shift of reference signal is proposed for heterodyne interferometer. The integer fringe counting method based on overflow judgment and compensation can realize longtime and correct integer number measurement. In order to eliminate the influence of jitter in measurement signals on combination of integer and fraction fringe counting, the reference signal with phase shift of 180° is used to obtain integer compensating number to compensate the unstable integer number in unstable phase zone, which guarantees the correct combination of integer and fraction fringe counting.

View Article and Find Full Text PDF

Disordered wrinkles are widely observed in stiff film deposited onto a thermally expanded polymer when compressive stress exceeds the critical wrinkling stress of the film. Highly ordered wrinkles can be fabricated by introducing regularly arranged patterns on the polymer before deposition. However, the study on the morphological evolution of localized wrinkling patterns near defects on the stiff film/compliant substrate is neglected.

View Article and Find Full Text PDF

A precision PGC demodulation for homodyne interferometer modulated with a combined sinusoidal and triangular signal is proposed. Using a triangular signal as additional modulation, a continuous phase-shifted interference signal for ellipse fitting is generated whether the measured object is in static or moving state. The real-time ellipse fitting and correction of the AC amplitudes and DC offsets of the quadrature components in PGC demodulation can be realized.

View Article and Find Full Text PDF

In order to reduce the nonlinearity caused by an error of phase modulation depth, carrier phase delay and non-ideal performance of the low pass filters in the sinusoidal phase modulating interferometer (SPMI), a modified EOM-based SPMI is proposed in this paper to realize real-time normalization of the quadrature components for the arctangent approach of phase generated carrier (PGC-Arctan) demodulation. To verify the effectiveness of the real-time normalization technique, a fixed-phase-difference detection method is presented to evaluate the periodic nonlinearity in real time. The modified EOM-based SPMI is consisted of a monitor interferometer and a probe interferometer.

View Article and Find Full Text PDF

We developed a three-dimensional biointerface of graphene-based electrical impedance sensor for metastatic cancer diagnosis at single-cell resolution. Compared with traditional impedance sensor with two-dimensional interface, the graphene biointerface mimiced the topography and somatotype features of cancer cells, achieving more comprehensive and thorough single cell signals in the three-dimensional space. At the nodes of physiological behavior change of single cell, namely cell capture, adhesion, migration and proliferation, the collected electrical signals from graphene biointerface were about two times stronger than those from the two-dimensional gold interface due to the substantial increase in contact area and significant improvement of topographical interaction between cells and graphene electrode.

View Article and Find Full Text PDF

A laser heterodyne interferometer with rotational error compensation is proposed for precision displacement measurement. In this interferometer, the rotational error of the measured object is obtained by using an angle detecting unit which is composed of a semi-reflective film, a polarizing beam splitter, a quarter-wave plate, a convex lens and a two-dimensional position sensitive detector. And the obtained rotational angle is used for compensating its influence on displacement measurement result.

View Article and Find Full Text PDF

A novel laser heterodyne interferometric system with following interference units is proposed for large X-Y-θ planar motion measurement. In this system, two interference units moved by two separate linear stages along x-axis and y-axis are used to follow the large movement of the measured stage so that the simultaneous measurement of three degrees of freedom X-Y-θ parameters of large planar motion is realized. The optical configuration of the proposed system is designed by using the orthogonal linearly polarized beam return method, the measurement principle is described and the mathematic model for simultaneously measuring X-Y-θ planar motion is derived.

View Article and Find Full Text PDF

A laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors is proposed for precision linear stage metrology. In this interferometer, the vertical straightness error and its position are measured by interference fringe counting, the yaw and pitch errors are obtained by measuring the spacing changes of interference fringe and the horizontal straightness and roll errors are determined by laser collimation. The merit of this interferometer is that four degrees of freedom motion errors are obtained by using laser interferometry with high accuracy.

View Article and Find Full Text PDF

The laser beam drift seriously influences the accuracy of straightness or displacement measurement in laser interferometers, especially for the long travel measurement. To solve this problem, a heterodyne straightness and displacement measuring interferometer with laser beam drift compensation is proposed. In this interferometer, the simultaneous measurement of straightness error and displacement is realized by using heterodyne interferometry, and the laser beam drift is determined to compensate the measurement results of straightness error and displacement in real time.

View Article and Find Full Text PDF

In order to compensate the nonlinear error of a heterodyne interferometer caused by both frequency mixing and phase demodulating electronics in real time, a novel iterative algorithm with a digital lock-in phase demodulator is proposed in this paper. By using iterative translating and scaling transforms, the phase diagram of the two output signals from phase demodulator is corrected from an ellipse with center offset to a circle at origin. As a result, the correct phase can be obtained and the nonlinear error is compensated.

View Article and Find Full Text PDF

As the phase delay between the carrier component of the detected interference signal and the carrier has adverse effect for phase generated carrier (PGC) demodulation, it is essential to compensate the phase delay to improve the accuracy of precision displacement measurement in sinusoidal phase-modulation interferometer (SPMI). In this paper, a real-time phase delay compensation method is proposed by regulating a compensating phase introduced to the carrier to maximize the output of the low pass filter so as to make the carrier synchronize with the interference signal. The influence of phase delay for PGC demodulation is analyzed and the method for real-time phase delay compensation is described in detail.

View Article and Find Full Text PDF

A laser wavelength precision measurement method is presented based on the laser synthetic wavelength interferometer (LSWI). According to the linear relation between the displacements of measurement and reference arms in the interferometer, the synthetic wavelength produced by an unknown wavelength and a reference wavelength can be measured by detecting the phase coincidences of two interference signals. The advantage of the method is that a larger synthetic wavelength resulting from an unknown wavelength very close to the reference wavelength can be easily determined according to the linear relation in the interferometer.

View Article and Find Full Text PDF

A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e).

View Article and Find Full Text PDF