Publications by authors named "Benya P"

Pulsed Electromagnetic Field (PEMF) has shown efficacy in bone repair and yet the optimum characteristics of this modality and its molecular mechanism remain unclear. To determine the effects of timing of PEMF treatment, we present a novel three-dimensional culture model of osteogenesis that demonstrates strong de novo generation of collagen and mineral matrix and exhibits stimulation by PEMF in multiple stages over 62 days of culture. Mouse postnatal day 2 calvarial pre-osteoblasts were cast within and around Teflon rings by polymerization of fibrinogen and cultured suspended without contact with tissue culture plastic.

View Article and Find Full Text PDF

Keloids are wounding-induced tumor-like human scars. Unclear etiology and lack of animal models to reveal disease mechanisms and invent therapies deepen the grievous health and psychosocial state of vulnerable individuals. Epitomizing the injury-repair environment which triggers and fosters keloid formation and essential dermal/epidermal interactions in disease development, the novel animal model was established by implanting porous polyethylene ring-supported plasma/fibrin-based epidermal-dermal skin constructs on the dorsum of athymic NU/J mice.

View Article and Find Full Text PDF

Cartilage injury represents one of the most significant clinical conditions. Implantation of expanded autologous chondrocytes from noninjured compartments of the joint is a typical strategy for repairing cartilage. However, two-dimensional culture causes dedifferentiation of chondrocytes, making them functionally inferior for cartilage repair.

View Article and Find Full Text PDF

CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival.

View Article and Find Full Text PDF

CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis.

View Article and Find Full Text PDF

Background: Numerous studies indicate highly crosslinked polyethylenes reduce the wear debris volume generated by hip arthroplasty acetabular liners. This, in turns, requires new methods to isolate and characterize them.

Questions/purposes: We describe a method for extracting polyethylene wear particles from bovine serum typically used in wear tests and for characterizing their size, distribution, and morphology.

View Article and Find Full Text PDF

Background: Metal-on-metal and ceramic-on-ceramic bearings were introduced as alternatives to conventional polyethylene in hip arthroplasties to reduce wear. Characterization of wear particles has been particularly challenging due to the low amount and small size of wear particles. Current methods of analysis of such particles have shortcomings, including particle loss, clumping, and inaccurate morphologic and chemical characterization.

View Article and Find Full Text PDF

The importance of wear particle characterization for orthopaedic implants has long been established in the hip and knee arthroplasty literature. With the increasing use of motion preservation implants in the spine, the characterization of wear debris, particularly metallic nature, is gaining importance. An accurate morphological analysis of wear particles provides for both a complete characterization of the biocompatibility of the implant material and its wear products, and an in-depth understanding of the wear mechanisms, ion release, and associated corrosive activity related to the wear particles.

View Article and Find Full Text PDF

Keloids are tumor-like skin scars that grow as a result of the aberrant healing of skin injuries, with no effective treatment. We provide new evidence that both overexpression of plasminogen activator inhibitor-1 (PAI-1) and elevated collagen accumulation are intrinsic features of keloid fibroblasts and that these characteristics are causally linked. Using seven strains each of early passage normal and keloid fibroblasts, the keloid strains exhibited inherently elevated collagen accumulation and PAI-1 expression in serum-free, 0.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-beta, bone morphogenetic protein (BMP), and interleukin-1beta activate TGF-beta-activated kinase 1 (TAK1), which lies upstream of the p38 MAPK, JNK, and NF-kappaB pathways. Our knowledge remains incomplete of TAK1 target genes, requirement for cooperative signaling, and capacity for shared or segregated ligand-dependent responses. We show that adenoviral overexpression of TAK1a in articular chondrocytes stimulated type II collagen protein synthesis 3-6-fold and mimicked the response to TGF-beta1 and BMP2.

View Article and Find Full Text PDF

Hip simulator tests of femoral balls of cobalt-chromium alloy or zirconia against acetabular cups of UHMW polyethylene were run with and without a coolant circulated inside the femoral balls. Without cooling, the wear of polyethylene against zirconia was about 48% lower than with cobalt-chromium alloy, but the steady-state temperature of the zirconia ball was higher (55 degrees C vs. 41 degrees C), and there was more precipitation of protein from the serum, which sometimes formed an adherent layer on the surface of the zirconia.

View Article and Find Full Text PDF

To investigate the effect of instability on the remodelling of a minor articular surface offset, we created a 0.5 mm coronal step-off of the medial femoral condyle in 12 New Zealand white rabbits and transected the anterior cruciate ligament (ACL). A control group of 12 rabbits had only ACL resection and the opposite knee was used as the non-operated control.

View Article and Find Full Text PDF

The effects of pre-dilution and other modifications of bovine serum lubricants on the wear properties of UHMW polyethylene acetabular cups were evaluated in a hip joint simulator. The wear rate increased, and a nonphysiological type of surface-pitting occurred, when the serum was pre-diluted to 40% or lower concentration. During the wear test, the equilibrium temperature and the precipitation of proteins were substantially greater with zirconia balls than with cobalt-chromium.

View Article and Find Full Text PDF

Frictional heat was monitored during wear tests of ultrahigh molecular weight polyethylene acetabular cups bearing against femoral balls of metal or ceramic in a hip simulator, using bovine serum as a lubricant. About 1 to 2 h of continuous cycling were required for the temperature in the zone of contact between the cup and ball to rise to its maximum steady value, and this equilibrium temperature was markedly higher with increased load and/or cycling rate. Frictional heating caused substantial precipitation of the proteins from the serum and, in some of the tests running at 1.

View Article and Find Full Text PDF

Coronal stepoffs of 0.5 mm (equal to the cartilage height) were created on the medial femoral condyles of adult, skeletally mature rabbits as a model for articular surface incongruity. After 3, 6, 12, and 24 weeks, tissue was analyzed histologically using hematoxylin and eosin and Safranin O staining, autoradiographs were made of the femoral condyles, and immunohistologic analysis was done for 3-B-3(-) and 7-D-4 chondroitin sulfate epitopes.

View Article and Find Full Text PDF

The less intense tissue reaction around metal on metal total hip replacements (THRs) compared to metal on polyethylene (PE) THRs may be explained by the differences in the characteristics of metal wear particles. In this study, transmission electron microscopy was used to study metal wear particles that were either in situ in cells or had been extracted from the cells by a new technique based on enzymatic tissue digestion. The tissues were obtained from 13 patients undergoing revision of metal on metal THRs with cobalt-chromium-molybdenum (CoCrMo) bearing couples.

View Article and Find Full Text PDF

Recent evidence suggests that decreased chondrocyte function in osteoarthritis and other articular disorders may be due to chondrocyte dedifferentiation produced by altered regulatory signals from the cartilage extracellular matrix (ECM). However, there are currently no mammalian chondrocytic cell line systems adapted to the study of this process. We therefore examined the effects of ECM growth conditions on markers of differentiated chondrocytic phenotype expression in the nontransformed rat RCJ 3.

View Article and Find Full Text PDF

PGs play an important role in regulating articular chondrocyte function in both normal and pathological states. However, the mechanisms of the effects of PG on chondrocyte function remain undefined. We, therefore, examined the effects of PGE1, PGE2, and PGE2 alpha on second messenger generation in relation to DNA and aggrecan synthesis in the nontransformed rat RCJ 3.

View Article and Find Full Text PDF

The transforming growth factor beta (TGF-beta) family of growth factors control proliferation, extracellular matrix synthesis and/ or differentiation in a wide variety of cells. However, the molecular mechanisms governing ligand binding, receptor oligomerization and signal transduction remain incompletely understood. In this study, we utilized a set of antibodies selective for the extracellular and intracellular domains of the TGF-beta type-II receptor as probes to investigate the intrinsic kinase activity of this receptor and its physical association in multimeric complexes with type-I and type-III receptors.

View Article and Find Full Text PDF

Thirteen adult female rabbits underwent unilateral osteotomy of the proximal tibia. In nine animals, 30 degrees of valgus angulation was created; in four animals, osteotomy without angulation was performed. After a 12-week survival period, the knee joints were processed for histology by staining with hematoxylin and eosin and safranin O.

View Article and Find Full Text PDF

Rabbit articular chondrocytes were treated with retinoic acid (RA) to eliminate the differentiated phenotype marked by the synthesis of type II collagen and high levels of proteoglycan. Exposure of such cells to transforming growth factor-beta 1 (TGF-beta 1) in secondary culture under serum-free and RA-free, defined conditions led to reexpression of the differentiated phenotype. The microfilament modifying drug, dihydrocytochalasin B (DHCB), enhanced the effectiveness of TGF-beta 1 and produced a threefold stimulation of type II collagen reexpression (measured by 2-D CNBr peptide mapping) at 0.

View Article and Find Full Text PDF

Cell lines were established from rabbit articular chondrocytes following transfection with a plasmid encoding SV40 early function genes. This resulted in cell immortalization (130 passages have been completed for the oldest cell line) with acquisition of characteristics of partial transformation such as reduced serum requirements for normal and clonal growth. The immortalized chondrocytes, called SVRAC, did not form multilayer foci when maintained in postconfluent culture.

View Article and Find Full Text PDF

The distribution of type I and type III collagens in rat, bovine and human skin were examined by a quantitative 2-D CNBr peptide mapping method. The procedure involved the solubilization of tissues by digestion with CNBr, radioactive labeling in vitro by [3H]-NaBH4 in dimethylformamide, reduction by mercaptoethanol, a second CNBr digestion and 2-D (isoelectric focusing and NaDodSO4 electrophoresis) mapping. The amounts of type I and type III collagen peptide spots in the fluorographs of 2-D maps were analyzed by 2-D scanning densitometer/analyzer.

View Article and Find Full Text PDF

We have isolated two overlapping cDNA clones covering 2425 base pairs encoding a short type VIII collagen chain synthesized by rabbit corneal endothelial cells. The cDNAs encode an open reading frame of 744 amino acid residues containing a triple-helical domain of 454 residues flanked by 117- and 173-residue amino and carboxyl non-triple-helical domains (called NC2 and NC1, respectively). Based on the identity between the DNA-derived amino acid sequence and the amino acid sequence of a type VIII collagen CNBr peptide obtained from rabbit corneal Descemet's membrane, we conclude that the cDNAs code for a type VIII collagen chain.

View Article and Find Full Text PDF

The differentiated phenotype of rabbit articular chondrocytes was modulated in primary culture by treatment with 1 microgram/ml retinoic acid (RA) and reexpressed in secondary culture by treatment with the microfilament-disruptive drug dihydrocytochalasin B (DHCB) in the absence of RA. Because the effective dose of DHCB (3 microM) did not elicit detectable cell rounding or retraction, the nature and extent of microfilament modification responsible for induction of reexpression was evaluated. The network of microfilament stress fibers detected with rhodamine-labeled phalloidin in primary control chondrocytes was altered by RA to a "cobblestone" pattern of circularly oriented fibers at the cell periphery.

View Article and Find Full Text PDF