Publications by authors named "Benxin Zhang"

Introduction: The time, frequency, and space information of electroencephalogram (EEG) signals is crucial for motor imagery decoding. However, these temporal-frequency-spatial features are high-dimensional small-sample data, which poses significant challenges for motor imagery decoding. Sparse regularization is an effective method for addressing this issue.

View Article and Find Full Text PDF

Total variation (TV) regularizer has diffusely emerged in image processing. In this paper, we propose a new nonconvex total variation regularization method based on the generalized Fischer-Burmeister function for image restoration. Since our model is nonconvex and nonsmooth, the specific difference of convex algorithms (DCA) are presented, in which the subproblem can be minimized by the alternating direction method of multipliers (ADMM).

View Article and Find Full Text PDF

In this article, the problem of impulse noise image restoration is investigated. A typical way to eliminate impulse noise is to use an L norm data fitting term and a total variation (TV) regularization. However, a convex optimization method designed in this way always yields staircase artifacts.

View Article and Find Full Text PDF

The common spatial pattern (CSP) is a very effective feature extraction method in motor imagery based brain computer interface (BCI), but its performance depends on the selection of the optimal frequency band. Although a lot of research works have been proposed to improve CSP, most of these works have the problems of large computation costs and long feature extraction time. To this end, three new feature extraction methods based on CSP and a new feature selection method based on non-convex log regularization are proposed in this paper.

View Article and Find Full Text PDF

Purpose: Both CT and PET radiomics is considered as a potential prognostic biomarker in head and neck cancer. This study investigates the value of fused pre-treatment functional imaging (18F-FDG PET/CT) radiomics for modeling of local recurrence of head and neck cancers.

Materials And Methods: Firstly, 298 patients have been divided into a training set (n = 192) and verification set (n = 106).

View Article and Find Full Text PDF

In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes.

View Article and Find Full Text PDF