Publications by authors named "Bentur J"

BPH (brown planthopper) and WBPH (white backed planthopper) are significant rice pests that often co-occur as sympatric species and cause substantial yield loss. Despite their genetic similarities, different host-resistance genes confer resistance against these two hoppers. The defense mechanisms in rice against these pests are complex, and the molecular processes regulating their responses remain largely unknown.

View Article and Find Full Text PDF

Yellow mosaic disease (YMD) is a major problem in Urd bean ( L.) in India, which causes huge yield losses. Breeding for wide spectrum and durable (MYMV) resistance and cultivating resistant cultivars is the most appropriate and effective approach.

View Article and Find Full Text PDF

The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, ), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant oral secretions, and as a result, the host mounts an appropriate defense response(s) (.

View Article and Find Full Text PDF

The brown planthopper (BPH; ) is one of India's most destructive pests of rice. BPH, a monophagous migratory insect, reported from all major rice-growing ecosystems of the country, is capable of traversing large distances and causing massive crop loss. A crucial step for developing viable management strategies is understanding its population dynamics.

View Article and Find Full Text PDF

Background: Rice is staple food for over two billion people. Planthoppers like BPH and WBPH occur together in most of rice growing regions across Asia and cause extensive yield loss by feeding and transmission of disease-causing viruses. Chemical control of the pest is expensive and ecologically disastrous; breeding resistant varieties is an acceptable option.

View Article and Find Full Text PDF

The Asian rice gall midge (ARGM), Orseolia oryzae is an important insect pest causing an annual yield loss of about US$ 80 million in India. Till now 11 R genes and seven biotypes of the pest have been characterized and reported. The indica rice variety Aganni, a landrace from the state of Kerala, is known to carry the gall midge resistance gene Gm8 with HR-type of resistance.

View Article and Find Full Text PDF

Background: Rice, a major food crop of the world, endures many major biotic stresses like bacterial blight (BB), fungal blast (BL) and the insect Asian rice gall midge (GM) that cause significant yield losses. Progress in tagging, mapping and cloning of several resistance (R) genes against aforesaid stresses has led to marker assisted multigene introgression into elite cultivars for multiple and durable resistance. However, no detailed study has been made on possible interactions among these genes when expressed simultaneously under combined stresses.

View Article and Find Full Text PDF

The Asian rice gall midge (ARGM) has emerged as a model gall forming pest of rice. The ARGM infestation of rice results in failure of panicle formation and economic loss. Understanding the molecular basis of ARGM-rice interactions is very crucial in order to control this devastating pest of rice.

View Article and Find Full Text PDF

Understanding virulence and manipulative strategies of gall formers will reveal new facets of plant defense and insect counter defense. Among the gall midges, the Asian rice gall midge (AGM) has emerged as a model for studies on plant-insect interactions. Data from several genomics, transcriptomics and metabolomics studies have revealed diverse strategies adopted by AGM to successfully invade the host while overcoming its defense.

View Article and Find Full Text PDF

This study examines aspects of virulence to resistant rice varieties among planthoppers and leafhoppers. Using a series of resistant varieties, brown planthopper, , virulence was assessed in seedlings and early-tillering plants at seven research centers in South and East Asia. Virulence of the whitebacked planthopper, , in Taiwan and the Philippines was also assessed.

View Article and Find Full Text PDF

Background: An incompatible interaction between rice (Oryza sativa) and the Asian rice gall midge (AGM, Orseolia oryzae Wood-Mason), that is usually manifested through a hypersensitive response (HR), represents an intricate relationship between the resistant host and its avirulent pest. We investigated changes in the transcriptome and metabolome of the host (indica rice variety: RP2068-18-3-5, RP), showing HR when attacked by an avirulent gall midge biotype (GMB1), to deduce molecular and biochemical bases of such a complex interaction. Till now, such an integrated analysis of host transcriptome and metabolome has not been reported for any rice-insect interaction.

View Article and Find Full Text PDF

The Asian rice gall midge, Orseolia oryzae, is a serious insect pest causing extensive yield loss. Interaction between the gall midge and rice genotypes is known to be on a gene-for-gene basis. Here, we report molecular basis of HR- (hypersensitive reaction-negative) type of resistance in Aganni (an indica rice variety possessing gall midge resistance gene Gm8) through the construction and analysis of a suppressive subtraction hybridization (SSH) cDNA library.

View Article and Find Full Text PDF

Gall midges are insects specialized in maneuvering plant growth, metabolic and defense pathways for their benefit. The Asian rice gall midge and rice share such an intimate relationship that there is a constant battle for survival by either partner. Diverse responses by the rice host against the midge include necrotic hypersensitive resistance reaction, non-hypersensitive resistance reaction and gall-forming compatible interaction.

View Article and Find Full Text PDF

Background: The Asian rice gall midge (Orseolia oryzae) is a destructive insect pest of rice. Gall midge infestation in rice triggers either compatible or incompatible interactions leading to survival or mortality of the feeding maggots, respectively. In incompatible interactions, generation of plant allelochemicals/defense molecules and/or inability of the maggots to continue feeding on the host initiate(s) apoptosis within the maggots.

View Article and Find Full Text PDF

The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae) was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon.

View Article and Find Full Text PDF

The Asian rice gall midge (Orseolia oryzae Wood-Mason) is a serious pest of rice that causes huge loss in yield. While feeding inside the susceptible host, maggots secrete substances that facilitate the formation of a hollow tube-like structure called gall and prevent panicle formation. The present investigation was carried out to get an account of biochemical changes occurring in the rice plant upon gall midge feeding.

View Article and Find Full Text PDF

We report here tagging and fine-mapping of gm3 gene, development of a functional marker for it and its use in marker-assisted selection. The recessive rice gall midge resistance gene, gm3 identified in the rice breeding line RP2068-18-3-5 confers resistance against five of the seven Indian biotypes of the Asian rice gall midge Orseolia oryzae. We report here tagging and fine-mapping of gm3 gene, development of a functional marker for it and demonstrated its use in marker-assisted selection (MAS).

View Article and Find Full Text PDF

The Asian rice gall midge, Orseolia oryzae (Diptera: Cecidomyiidae), is the third most destructive insect pest of rice (Oryza sativa L.). Till date, 11 gall midge resistance gene loci have been characterized in different rice varieties.

View Article and Find Full Text PDF

The Asian rice gall midge (Orseolia oryzae) is a major pest responsible for immense loss in rice productivity. Currently, very little knowledge exists with regard to this insect at the molecular level. The present study was initiated with the aim of developing molecular resources as well as identifying alterations at the transcriptome level in the gall midge maggots that are in a compatible (SH) or in an incompatible interaction (RH) with their rice host.

View Article and Find Full Text PDF

Background: A major pest of rice, the Asian rice gall midge (Orseolia oryzae Wood-Mason), causes significant yield losses in the rice growing regions throughout Asia. Feeding by the larvae induces susceptible plants to produce nutritive tissue to support growth and development. In order to identify molecular signatures during compatible interactions, genome wide transcriptional profiling was performed using SSH library and microarray technology.

View Article and Find Full Text PDF

The Asian rice gall midge, Orseolia oryzae, is a major dipteran pest of rice, with many known biotypes. The present investigation was initiated to understand the molecular mechanisms of infestation for developing novel integrated pest management strategies. We isolated and characterized a gene, nucleoside diphosphate kinase (OoNDPK), from the rice gall midge, encoding a protein with 169 amino acid residues and with a secretory signal sequence - an observation that assumes significance as salivary gland secretions have been implicated to play a major role in insect-plant interactions.

View Article and Find Full Text PDF

The Asian rice gall midge [Orseolia oryzae (Wood-Mason)] is an important rice pest causing an annual average yield loss of about US $80 million in India. Rice varieties possess several discrete resistance (R) genes conferring resistance against the pest in two distinct ways, i.e.

View Article and Find Full Text PDF

Bacillus thuringiensis (Bt), a gram positive soil bacteria was first identified and named by Japanese microbiologist Shigetane Ishiwata in 1901. During sporulation Bt produces proteinaceous parasporal crystal proteins called δ-endotoxins, or Cry proteins, which are insecticidal. Numerous Cry proteins have been isolated and characterized from different Bt strains with activity against insects, mites and nematodes.

View Article and Find Full Text PDF

The Asian rice gall midge, Orseolia oryzae (Wood-Mason), is a serious pest of rice. Investigations into the gall midge-rice interaction will unveil the underlying molecular mechanisms which, in turn, can be used as a tool to assist in developing suitable integrated pest management strategies. The insect gut is known to be involved in various physiological and biological processes including digestion, detoxification and interaction with the host.

View Article and Find Full Text PDF

The Asian rice gall midge, Orseolia oryzae, is a fast evolving, damaging pest of rice. Understanding the underlying molecular mechanism of interaction between the gall midge and rice will help in devising strategies to control and manage the pest. The present study aims to identify rice-responsive genes in the gall midge that aid pest survival.

View Article and Find Full Text PDF