Collocated crystal sizes and mineral identities are critical for interpreting textural relationships in rocks and testing geological hypotheses, but it has been previously impossible to unambiguously constrain these properties using in situ instruments on Mars rovers. Here, we demonstrate that diffracted and fluoresced x-rays detected by the PIXL instrument (an x-ray fluorescence microscope on the Perseverance rover) provide information about the presence or absence of coherent crystalline domains in various minerals. X-ray analysis and multispectral imaging of rocks from the Séítah formation on the floor of Jezero crater shows that they were emplaced as coarsely crystalline igneous phases.
View Article and Find Full Text PDFHygroscopic salts at Mars' near-surface (MgSO, (per)chlorates, NaCl) may form brines by absorbing moisture from the atmosphere at certain times through the process of deliquescence. We have previously shown strong bacterial growth in saturated MgSO (∼67% w/v as epsomite) at room temperature, and growth was observed at the MgSO eutectic point (43% w/v at -4°C). Here, we have investigated the growth of salinotolerant microbes () from Hot Lake, Washington; Basque Lake, British Columbia; and Great Salt Plains, Oklahoma under deliquescing conditions.
View Article and Find Full Text PDFAlthough the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it.
View Article and Find Full Text PDFAlthough the cellular microorganism is the fundamental unit of biology, the origin of life (OoL) itself is unlikely to have occurred in a microscale environment. The macrobiont (MB) is the macro-scale setting where life originated. Guided by the methodologies of Systems Analysis, we focus on subaerial ponds of scale 3 to 300 m diameter.
View Article and Find Full Text PDFLiquid water on Mars might be created by deliquescence of hygroscopic salts or by permafrost melts, both potentially forming saturated brines. Freezing point depression allows these heavy brines to remain liquid in the near-surface environment for extended periods, perhaps as eutectic solutions, at the lowest temperatures and highest salt concentrations where ices and precipitates do not form. Perchlorate and chlorate salts and iron sulfate form brines with low eutectic temperatures and may persist under Mars near-surface conditions, but are chemically harsh at high concentrations and were expected to be incompatible with life, while brines of common sulfate salts on Mars may be more suitable for microbial growth.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
July 2019
Athalassohaline waters that are rich in divalent ions are good analogues for the chemical environments of Mars and the ocean worlds. Sulfate salts, along with chlorides, are important in Mars regolith with Ca, Fe, Mg, and Na counterions. Certain lakes in the Pacific Northwest are saturated with MgSO as epsomite.
View Article and Find Full Text PDFIn the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents.
View Article and Find Full Text PDFSucretolerant microbes grow in the presence of sugar concentrations high enough to substantially lower water activities. Natural habitats high in sugars are mainly limited to dried fruit, floral nectar, honey, sugarcane, and associated soils. Organisms that tolerate extremes of solute concentration, high enough to lower water activities, might not be expected in common oligoosmotic soils.
View Article and Find Full Text PDFUnlabelled: A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle.
View Article and Find Full Text PDFA committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team.
View Article and Find Full Text PDFHot Lake (Oroville, WA) is an athalassohaline epsomite lake that can have precipitating concentrations of MgSO salts, mainly epsomite. Little biotic study has been done on epsomite lakes and it was unclear whether microbes isolated from epsomite lakes and their margins would fall within recognized halotolerant genera, common soil genera, or novel phyla. Our initial study cultivated and characterized epsotolerant bacteria from the lake and its margins.
View Article and Find Full Text PDFDecades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater.
View Article and Find Full Text PDFThe Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission.
View Article and Find Full Text PDFWe measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%.
View Article and Find Full Text PDFThe surface of Saturn's largest satellite--Titan--is largely obscured by an optically thick atmospheric haze, and so its nature has been the subject of considerable speculation and discussion. The Huygens probe entered Titan's atmosphere on 14 January 2005 and descended to the surface using a parachute system. Here we report measurements made just above and on the surface of Titan by the Huygens Surface Science Package.
View Article and Find Full Text PDFGusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rover's tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown 'global' dust.
View Article and Find Full Text PDFThe mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived.
View Article and Find Full Text PDFImages taken by the Stardust mission during its flyby of 81P/Wild 2 show the comet to be a 5-kilometer oblate body covered with remarkable topographic features, including unusual circular features that appear to be impact craters. The presence of high-angle slopes shows that the surface is cohesive and self-supporting. The comet does not appear to be a rubble pile, and its rounded shape is not directly consistent with the comet being a fragment of a larger body.
View Article and Find Full Text PDF