Background: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) are serious conditions and are being diagnosed at an increased rate. The etiology of these hepatic disorders is not clear but involves insulin resistance and oxidative stress. Remogliflozin etabonate (Remo) is an inhibitor of the sodium glucose-dependent renal transporter 2 (SGLT2), and improves insulin sensitivity in type 2 diabetics.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancy, with high mortality attributable to widespread intraperitoneal metastases. Recent meta-analyses report an association between obesity, ovarian cancer incidence, and ovarian cancer survival, but the effect of obesity on metastasis has not been evaluated. The objective of this study was to use an integrative approach combining in vitro, ex vivo, and in vivo studies to test the hypothesis that obesity contributes to ovarian cancer metastatic success.
View Article and Find Full Text PDFRemogliflozin etabonate (RE), the prodrug of remogliflozin, is an inhibitor of the sodium glucose-dependent renal transporter 2 (SGLT2), enabling urinary glucose excretion to reduce hyperglycemia for the treatment of type 2 diabetes. Renal function declines more rapidly in patients with type 2 diabetes, making it difficult or unsafe to continue on some antidiabetic therapeutics. In an initial effort to understand the potential utility of RE in patients with renal impairment, the pharmacodynamics and pharmacokinetics of RE were evaluated in a single oral dose (250 mg) in patients with renal impairment as compared with control subjects.
View Article and Find Full Text PDFMyoblast proliferation and differentiation are essential for normal skeletal muscle growth and repair. Muscle recovery is dependent on the quiescent population of muscle stem cells - satellite cells. During muscle injury, satellite cells become mitotically active and begin the repair process by fusing with each other and/or with myofibers.
View Article and Find Full Text PDFObjectives: A spectrum of disorders including simple steatosis, nonalcoholic steatohepatitis, fibrosis, and cirrhosis is described by nonalcoholic fatty liver disease (NAFLD). With the increased prevalence of obesity, and consequently NAFLD, there is a need for novel therapeutics in this area. To facilitate this effort, a cellular model of hepatic steatosis was developed using HepaRG cells and the resulting biochemical alterations were determined.
View Article and Find Full Text PDFMethods Mol Biol
September 2013
Human adipose-derived adult stem cells (ASCs) represent a unique population of multipotent stem cells. Their utility in a variety of tissue engineering applications, and as a model system for the study of molecular mechanisms of differentiation, is well established. In addition, their relative abundance, ease of isolation from human subcutaneous lipoaspirates, and functional stability make them an excellent physiologically relevant platform.
View Article and Find Full Text PDFAdipose tissue serves as a source of adipokines and cytokines with both local and systemic actions in health and disease. In this study, we examine the hypothesis that multipotent human adipose-derived stem cells (ASCs), capable of differentiating along the adipocyte, chondrocyte, and osteoblast pathways, contribute to adipose tissue-derived cytokine secretion. Following exposure to basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF), the ASCs significantly increase their secretion of hepatocyte growth factor (HGF), a cytokine implicated in hematopoiesis, vasculogenesis, and mammary epithelial duct formation.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2002
Energy homeostasis is regulated by peripheral signals, such as leptin, and by several orexigenic and anorectic neuropeptides. Recently, we reported that the orexigenic neuropeptide melanin-concentrating hormone (MCH) stimulates leptin production by rat adipocytes and that the MCH receptor (MCH-R1) is present on these cells. Here, we show that MCH-R1 is present on murine 3T3-L1 adipocytes.
View Article and Find Full Text PDF