The potato family includes a highly diverse cultivar repertoire and has a high potential for nutritional yield improvement and refinement but must in line with other crops be adapted to biotic and abiotic stresses, for example, accelerated by climate change and environmental demands. The combination of pluripotency, high ploidy, and relative ease of protoplast isolation, transformation, and regeneration together with clonal propagation through tubers makes potato highly suitable for precise genetic engineering. Most potato varieties are tetraploid having a very high prevalence of length polymorphisms and small nucleotide polymorphisms between alleles, often complicating CRISPR-Cas editing designs and strategies.
View Article and Find Full Text PDFThe potato (Solanum tuberosum) is a staple food worldwide, but modern potato cultivation relies heavily on the use of pesticides to control pests and diseases. However, many wild Solanum species are highly resistant to biotic and abiotic stresses relevant for potato production. Several of those species have been used in potato breeding to confer resistances which has only been moderately successful.
View Article and Find Full Text PDFContinued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility.
View Article and Find Full Text PDFFront Plant Sci
May 2024
Mung bean starch is distinguished by its exceptional high amylose content and regulation of starch biosynthesis in leaves and storage tissues, such as seeds, share considerable similarities. Genetic engineering of starch composition and content, requires detailed knowledge of starch biosynthetic gene expression and enzymatic regulation. In this study we applied detailed transcriptomic analyses to unravel the global differential gene expression patterns in mung bean leaves and in seeds during various stages of development.
View Article and Find Full Text PDFSoil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress.
View Article and Find Full Text PDFis a wild diploid tuber-bearing plant. We here demonstrate transgene-free genome editing of protoplasts and regeneration of gene-edited plants. We use ribonucleoproteins, consisting of Cas9 and sgRNA, assembled in vitro, to target a gene belonging to the nitrate and peptide transporter family.
View Article and Find Full Text PDFMicrowave treatment is an environmentally friendly method for modification of high-amylose maize starch (HAMS). Here, the effects of short-time (≤120 s) microwave treatment on the structure and pasting of two types of HAMSs, Gelose 50 (HAMSI) and Gelose 80 (HAMSII), with apparent amylose content (AAC) of 45 % and 58 %, respectively, was studied using a multiscale approach including X-ray scattering, surface structures, particle size distribution, molecular size distributions and high temperature/pressure Rapid Visco Analysis (RVA)-4800 pasting. As compared to starch with no amylose (waxy maize starch, WMS) and 25 % amylose content (normal maize starch, NMS), HAMSI underwent similar structural and pasting changes as WMS and NMS upon microwave treatment, and it might primarily be attributed to the amylopectin fraction that was affected by cleavage of the connector chains between double helices and backbone chains, which decreased the crystallinity and thickness of the crystalline lamellae.
View Article and Find Full Text PDFRaw starch is commonly modified to enhance its functionality for industrial applications. There is increasing demand for 'green' modified starches from both end-consumers and producers. It is well known that environmental conditions are key factors that determine plant growth and yield.
View Article and Find Full Text PDFIn this study, we generated and compared three cytidine base editors (CBEs) tailor-made for potato (), which conferred up to 43% C-to-T conversion of all alleles in the protoplast pool. Earlier, gene-edited potato plants were successfully generated by polyethylene glycol-mediated CRISPR/Cas9 transformation of protoplasts followed by explant regeneration. In one study, a 3-4-fold increase in editing efficiency was obtained by replacing the standard U6-1 promotor with endogenous potato U6 promotors driving the expression of the gRNA.
View Article and Find Full Text PDFSweet potato was planted at three soil and air temperatures (21, 25 and 28 °C) with the same humidity and light time/intensity. Root tuber starches were isolated, and their multi-scale structures were investigated to reveal the effects of growth temperature on starch properties. Growth temperature did not change the morphology and amylose content of starch, but markedly increased the size of starch from volume-weighted mean diameter 12.
View Article and Find Full Text PDFFront Genome Ed
June 2022
Schemes for efficient regenerationand recovery of shoots from tissues or single cells, such as protoplasts, are only available for limited numbers of plant species and genotypes and are crucial for establishing gene editing tools on a broader scale in agriculture and plant biology. Growth conditions, including hormone and nutrient composition as well as light regimes in key steps of known regeneration protocols, display significant variations, even between the genotypes within the same species, e.g.
View Article and Find Full Text PDFThis review systematically documents the major different strategies of generating high-amylose (HAS) starch mutants aiming at providing high resistant starch, by engineering the starch biosynthesis metabolic pathways. We identify three main strategies based on a new representation of the starch structure: 'the building block backbone model': i) suppression of starch synthases for reduction of amylopectin (AP) side-chains; ii) suppression of starch branching enzymes (SBEs) for production of AM-like materials; and iii) suppression of debranching enzymes to restrain the transformation from over-branched pre-AP to more ordered AP. From a biosynthetic perspective, AM generated through the second strategy can be classified into two types: i) normal AM synthesized mainly by regular expression of granule-bound starch synthases, and ii) modified linear AP chains (AM-like material) synthesized by starch synthases due to the suppression of starch branching enzymes.
View Article and Find Full Text PDFPotato, is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.
View Article and Find Full Text PDFA wide range of proteins with diverse functions in development, defense, and stress responses are -arabinosylated at hydroxyprolines (Hyps) within distinct amino acid motifs of continuous stretches of Hyps, as found in the structural cell wall extensins, or at non-continuous Hyps as, for example, found in small peptide hormones and a variety of plasma membrane proteins involved in signaling. Plant -glycosylation relies on hydroxylation of Prolines to Hyps in the protein backbone, mediated by prolyl-4-hydroxylase (P4H) which is followed by -glycosylation of the Hyp C-OH group by either galactosyltransferases (GalTs) or arabinofuranosyltranferases (AraTs) yielding either Hyp-galactosylation or Hyp-arabinosylation. A subset of the P4H enzymes with putative preference to hydroxylation of continuous prolines and presumably all AraT enzymes needed for synthesis of the substituted arabinose chains of one to four arabinose units, have been identified and functionally characterized.
View Article and Find Full Text PDFThe use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes.
View Article and Find Full Text PDFAdvances in genome editing technologies have enabled manipulation of genomes at the single base level. These technologies are based on programmable nucleases (PNs) that include meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) nucleases and have given researchers the ability to delete, insert or replace genomic DNA in cells, tissues and whole organisms. The great flexibility in re-designing the genomic target specificity of PNs has vastly expanded the scope of gene editing applications in life science, and shows great promise for development of the next generation gene therapies.
View Article and Find Full Text PDFCotton fibre provides a unicellular model system for studying cell expansion and secondary cell wall deposition. Mature cotton fibres are mainly composed of cellulose while the walls of developing fibre cells contain a variety of polysaccharides and proteoglycans required for cell expansion. This includes hydroxyproline-rich glycoproteins (HRGPs) comprising the subgroup, extensins.
View Article and Find Full Text PDFPlant arabinogalactan proteins (AGPs) are a diverse group of cell surface- and wall-associated glycoproteins. Functionally important AGP glycans are synthesized in the Golgi apparatus, but the relationships among their glycosylation levels, processing, and functionalities are poorly understood. Here, we report the identification and functional characterization of two Golgi-localized exo-β-1,3-galactosidases from the glycosyl hydrolase 43 (GH43) family in GH43 loss-of-function mutants exhibited root cell expansion defects in sugar-containing growth media.
View Article and Find Full Text PDFHYDROXYPROLINE O-ARABINOSYLTRANSFERASEs (HPATs) initiate a post-translational protein modification (Hyp-Ara) found abundantly on cell wall structural proteins. In Arabidopsis thaliana, HPAT1 and HPAT3 are redundantly required for full pollen fertility. In addition to the lack of Hyp-Ara in hpat1/3 pollen tubes (PTs), we also found broadly disrupted cell wall polymer distributions, particularly the conversion of the tip cell wall to a more shaft-like state.
View Article and Find Full Text PDFProtein N-glycosylation is an essential and highly conserved posttranslational modification found in all eukaryotic cells. Yeast, plants and mammalian cells, however, produce N-glycans with distinct structural features. These species-specific features not only pose challenges in selecting host cells for production of recombinant therapeutics for human medical use but also provide opportunities to explore and utilize species-specific glycosylation in design of vaccines.
View Article and Find Full Text PDFCovering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance.
View Article and Find Full Text PDFBackground: CRISPR/Cas9 is widely used for precise genetic editing in various organisms. CRISPR/Cas9 editing may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 components to gamete cells or cells with regenerative potential. Optimized strategies and methods to overcome these challenges are therefore in demand.
View Article and Find Full Text PDF