Publications by authors named "Benson J Edagwa"

Chronic hepatitis B virus (HBV) infection leads to the development of cirrhosis and hepatocellular carcinoma. Lifelong treatment with nucleotides/nucleoside antiviral agents is effective at suppressing HBV replication, however, adherence to daily therapy can be challenging. This review discusses recent advances in the development of long-acting formulations for HBV treatment and prevention, which could potentially improve adherence.

View Article and Find Full Text PDF

The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction-relaxation cycles, and the disruption of these processes can elicit Ca waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIV-Tat: 0-52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0-25,344 ng/mL), efavirenz (EFV: 0-11,376 ng/mL), and ritonavir (RTV: 0-25,956 ng/mL) bind to and modulate the opening and closing of RyR2.

View Article and Find Full Text PDF

Treatment of chronic hepatitis B virus (HBV) requires lifelong daily therapy. However, suboptimal adherence to the existing daily therapy has led to the need for ultralong-acting antivirals. A lipophilic and hydrophobic ProTide was made by replacing the alanyl isopropyl ester present in tenofovir alafenamide (TAF) with a docosyl phenyl alanyl ester, now referred to as M1TFV.

View Article and Find Full Text PDF

Prodrugs are bioreversible drug derivatives which are metabolized into a pharmacologically active drug following chemical or enzymatic modification. This approach is designed to overcome several obstacles that are faced by the parent drug in physiological conditions that include rapid drug metabolism, poor solubility, permeability, and suboptimal pharmacokinetic and pharmacodynamic profiles. These suboptimal physicochemical features can lead to rapid drug elimination, systemic toxicities, and limited drug-targeting to disease-affected tissue.

View Article and Find Full Text PDF

Dolutegravir (DTG) is a first-line antiretroviral drug (ARV) used in combination therapy for the treatment of human immunodeficiency virus type-1 (HIV-1) infection. The drug is effective, safe, and well tolerated. Nonetheless, concerns have recently emerged for its usage in pregnant women or those of child-bearing age.

View Article and Find Full Text PDF

A once every eight-week cabotegravir (CAB) long-acting parenteral is more effective than daily oral emtricitabine and tenofovir disoproxil fumarate in preventing human immunodeficiency virus type one (HIV-1) transmission. Extending CAB dosing to a yearly injectable advances efforts for the elimination of viral transmission. Here we report rigor, reproducibility and mechanistic insights for a year-long CAB injectable.

View Article and Find Full Text PDF

Introduction: Despite significant advances in treatment and prevention of HIV-1 infection, poor adherence to daily combination antiretroviral therapy (ART) regimens remains a major obstacle toward achieving sustained viral suppression and prevention. Adherence to ART could also be compromised by adverse drug reactions and societal factors that limit access to therapy. Therefore, medicines that aim to improve adherence by limiting ART side effects, frequency of dosing and socially acceptable regimens are becoming more attractive.

View Article and Find Full Text PDF

Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles.

View Article and Find Full Text PDF

Nowadays, there is a strong request for the treatment of chronic HBV-infection with direct acting antivirals. Furthermore, prevalent human immunodeficiency virus (HIV-1) and hepatitis B (HBV) co-infections highlight an immediate need for dual long-acting and easily administered antivirals. To this end, we modified lamivudine (3TC), a nucleoside analog inhibitor of both viruses, into a lipophilic monophosphorylated prodrug (M23TC).

View Article and Find Full Text PDF

Purpose: A palmitoylated prodrug of emtricitabine (FTC) was synthesized to extend the drug's half-life, antiretroviral activities and biodistribution.

Methods: A modified FTC prodrug (MFTC) was synthesized by palmitoyl chloride esterification. MFTC's chemical structure was evaluated by nuclear magnetic resonance.

View Article and Find Full Text PDF

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options.

View Article and Find Full Text PDF

While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC).

View Article and Find Full Text PDF

Alloviroidin is a cyclic heptapeptide, produced by several species of Amanita mushrooms, that demonstrates high affinity for F-actin as is characteristic of virotoxins and phallotoxins. Alloviroidin was synthesized via a [3 + 4] fragment condensation of Fmoc-d-Thr(OTBS)-d-Ser(OTBS)-(2 S,3 R,4 R)-DHPro(OTBS)-OH and H-Ala-Trp(2-SOMe)-(2 S,4 S)-DHLeu(5-OTBS)-Val-OMe to form bond A. The linear heptapeptide favored a turn conformation, facilitating cyclization between Val and d-Thr (position B).

View Article and Find Full Text PDF

Antiretroviral therapy (ART) has changed the outcome of human immunodeficiency virus type one (HIV-1) infection from certain death to a life free of disease co-morbidities. However, infected people must remain on life-long daily ART. ART reduces but fails to eliminate the viral reservoir.

View Article and Find Full Text PDF

Rationale: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models.

View Article and Find Full Text PDF

Unlabelled: The size, shape and chemical composition of europium (Eu) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.

View Article and Find Full Text PDF

Aim: Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized.

Materials & Methods: A mannose-anchored thiolated chitosan nanocarrier was manufactured and characterized.

View Article and Find Full Text PDF

Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV).

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) infection commonly results in a myriad of comorbid conditions secondary to immune deficiency. Infection also affects broad organ system function. Although current antiretroviral therapy (ART) reduces disease morbidity and mortality through effective control of peripheral viral load, restricted infection in HIV reservoirs including gut, lymphoid and central nervous system tissues, is not eliminated.

View Article and Find Full Text PDF

Eradication of Mycobacterium tuberculosis (MTB) infection requires daily administration of combinations of rifampin (RIF), isoniazid [isonicotinylhydrazine (INH)], pyrazinamide, and ethambutol, among other drug therapies. To facilitate and optimize MTB therapeutic selections, a mononuclear phagocyte (MP; monocyte, macrophage, and dendritic cell)-targeted drug delivery strategy was developed. Long-acting nanoformulations of RIF and an INH derivative, pentenyl-INH (INHP), were prepared, and their physicochemical properties were evaluated.

View Article and Find Full Text PDF

1-Deoxy-D-xylulsose-5-phosphate (DXP) is a key intermediate in the non-mevalonate or methyl erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoid, which are essential building blocks involved in the construction of pathogens growth. Since the homologous enzymes of this pathway are not present in vertebrates, including humans, the MEP pathway presents a viable source for antimicrobial drug targets. However, an insight into the features of the enzymes involved in this pathway has been plagued by lack of chirally pure substrates.

View Article and Find Full Text PDF

Unlabelled: Macrophages serve as vehicles for the carriage and delivery of polymer-coated nanoformulated antiretroviral therapy (nanoART). Although superior to native drug, high drug concentrations are required for viral inhibition. Herein, folate-modified ritonavir-boosted atazanavir (ATV/r)-encased polymers facilitated macrophage receptor targeting for optimizing drug dosing.

View Article and Find Full Text PDF

The title compound, C(13)H(15)ClN(2)O(6), was synthesized by hypochlorous acid-mediated chlorination of N-acetyl-3-nitro-l-tyrosine ethyl ester. The OH group forms an intra-molecular O-H⋯O hydrogen bond to the nitro group and the N-H group forms an inter-molecular N-H⋯O hydrogen bonds to an amide O atom, linking the mol-ecules into chains along [100]. The crystal studied was a non-merohedral twin, with a 0.

View Article and Find Full Text PDF