Using dredged sediment as plant growth substrates is a promising way to deal with large amounts of excavated sediments. However, it is a big challenge to deal with various pollutants in sediments, among which microcystins (MCs) gained limited attention. In this study, sediments collected from Lake Taihu were mixed with agricultural soil at a 1:1 ratio to create various growing substrates for lettuce (Lactuca sativa L.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2023
The use of cyanobacteria-polluted water for irrigation has become an increasing concern due to the potential contamination of microcystins (MCs). However, the effects of MCs on plant performance and food safety under different irrigation methods are not well understood. In this study, we investigated the effects of microcystin-LR (MC-LR) on the growth, food quality, and safety of lettuce and carrot using four irrigation methods (spray irrigation and three types of drip irrigation with different distances from the plant stem).
View Article and Find Full Text PDFEnviron Pollut
October 2022
Activities such as irrigation with cyanobacteria-polluted water can lead to microcystins (MCs) migration from soil surface to the deeper layers, which could pose a potential risk to ground drinking water safety. The present study evaluated the sorption, degradation and leaching behavior of microcystin-LR (MC-LR) in two different soils amended with biochar and peat. Results showed that both biochar and peat could significantly increase MC-LR sorption in both soils.
View Article and Find Full Text PDFEnviron Pollut
January 2022
Contamination of microcystins (MCs) in plant-soil system have become a serious problem worldwide, however, it remains largely unknown how to alleviate the potential risk of consuming MCs-contaminated plants. In the present study, attapulgite, biochar and peat were used as soil amendments to reduce MCs bioaccumulation in lettuce. Lettuce irrigated with 10 μg L microcystin-LR (MC-LR) were growing in two different kinds of soils with or without soil amendments.
View Article and Find Full Text PDFInternal nutrient loading caused by sediment resuspension is becoming a key issue in studying water eutrophication of shallow lakes. A Y-shape apparatus was used to simulate sediment resuspension and sedimentation process under hydrodynamic conditions in situ in grass type zone of Lake Taihu, and effects on aqueous nutrient loading were investigated. The results indicated that, in the light and moderate wind processes, content of ammonia nitrogen and phosphate had remarkably reduced with the increase of the amount of suspended sediments in water column, with the maximal change of -0.
View Article and Find Full Text PDFThe turnover of phosphorus (P) in lake sediments, a major cause of eutrophication and subsequent deterioration of water quality, is in need of deep understanding. In this study, effects of resuspension on P release were studied in cylindrical microcosms with Y-shape apparatus. The results indicated that there was a positive correlation between flux of suspended substance across sediment-water interface (F(SS)) and the wind speed, and an increasing F(SS) during each wind process followed by a steady state.
View Article and Find Full Text PDF