Publications by authors named "Benon P Maliszewski"

The discovery and optimisation of reaction conditions leading to the reduction of amides, a fundamental large-scale industrial reaction, is achieved using a machine learning (ML) platform and a platinum catalyst. The optimisation leads to the discovery of a new platinum-based catalytic system that displays unexpectedly high performance. The approach enables rapid and high conversions at ppm-level catalyst loadings.

View Article and Find Full Text PDF

An efficient olefin hydrosilylation protocol utilising Pt(II)-thioether-based pre-catalysts is reported. These simple and readily available complexes exhibit excellent catalytic performance and offer significant advantages over existing alternatives, enabling rapid and high conversions at ppm-level catalyst loadings.

View Article and Find Full Text PDF

Herein, we report the catalytic activity of a series of platinum(II) pre-catalysts, bearing N-heterocyclic carbene (NHC) ligands, in the alkene hydrosilylation reaction. Their structural and electronic properties are fully investigated using X-ray diffraction analysis and nuclear magnetic resonance spectroscopy (NMR). Next, our study presents a structure-activity relationship within this group of pre-catalysts and gives mechanistic insights into the catalyst activation step.

View Article and Find Full Text PDF

A sustainable and facile weak-base synthetic route to platinum N-heterocyclic carbene (NHC) complexes is disclosed. The mechanism of this reaction is also elucidated experimental and computational investigations. This straightforward protocol is then used for the synthesis of novel Pt(II)-NHC complexes and its utility is further explored to access key Pt(0)-NHC precatalysts.

View Article and Find Full Text PDF

The integration of a membrane separation protocol with the platinum-catalyzed hydrosilylation of olefins is investigated. The catalytic reaction is first optimized in batch where [Pt(IPr*)(dms)Cl ] (IPr*=1,3-bis[2,6-bis(diphenylmethyl)-4-methylphenyl]imidazol-2-ylidene, dms=dimethyl sulfide) demonstrates superior activity compared to the less sterically encumbered [Pt(SIPr)(dms)Cl ] (SIPr=1,3-bis(2,6-diisopropylphenyl)imidazolidine) congener. Filtration conditions are identified in membrane screening experiments.

View Article and Find Full Text PDF

A general, user-friendly synthetic route to [Pt(NHC)(L)Cl2] and [Pt(NHC)(dvtms)] (L = DMS, Py; DMS = dimethyl sulfide, dvtms = divinyltetramethylsiloxane, Py = pyridine) complexes has been developed. The procedure is applicable to a wide range of ligands and enables facile synthetic access to key Pt(0)- and Pt(ii)-NHC complexes used in hydrosilylation catalysis.

View Article and Find Full Text PDF