Publications by authors named "Benoit Roman"

On a flat map of the Earth, continents are inevitably distorted. Reciprocally, curving a plate simultaneously in two directions requires a modification of in-plane distances, as Gauss stated in his seminal theorem. Although emerging architectured materials with programmed in-plane distortions are capable of such shape morphing, an additional control of local bending is required to precisely set the final shape of the resulting three-dimensional surface.

View Article and Find Full Text PDF

The crystal structure of atomically defined colloidal II-VI semiconductor nanoplatelets (NPLs) induces the self-assembly of organic ligands over thousands of square nanometers on the top and bottom basal planes of these anisotropic nanoparticles. NPLs curl into helices under the influence of the surface stress induced by these ligands. We demonstrate the control of the radii of NPL helices through the ligands described as an anchoring group and an aliphatic chain of a given length.

View Article and Find Full Text PDF

We show that ribbed elastic strips under tension present large spontaneous curvature and may close into tubes. In this single material architectured system, transverse bending results from a bilayer effect induced by Poisson contraction as the textured ribbon is stretched. Surprisingly, the induced curvature may reverse if ribs of different orientations are considered.

View Article and Find Full Text PDF

Many active materials used in shape-morphing respond to an external stimulus by stretching or contracting along a director field. The programming of such actuators remains complex because of the single degree of freedom (the orientation) in local actuation. Here, texturing this field in zigzag patterns is shown to provide an extended family of biaxial active stretches out of an otherwise single uniaxial active deformation, opening a larger parameter space.

View Article and Find Full Text PDF

Lack of stiffness often limits thin shape-shifting structures to small scales. The large in-plane transformations required to distort the metrics are indeed commonly achieved by using soft hydrogels or elastomers. We introduce here a versatile single-step method to shape-program stiff inflated structures, opening the door for numerous large scale applications, ranging from space deployable structures to emergency shelters.

View Article and Find Full Text PDF

Cutting a brittle thin sheet with a blunt object leaves an oscillating crack that seemingly violates the principle of local symmetry for fracture. We experimentally find that at a critical value of a well chosen control parameter the straight propagation is unstable and leads to an oscillatory pattern whose amplitude and wavelength grow by increasing the control parameter. We propose a simple model that unifies this instability with a related problem, namely that of a perforated sheet, where through a similar bifurcation a series of radial cracks spontaneously spiral around each other.

View Article and Find Full Text PDF

We report a new oscillatory propagation of cracks in thin films where three cracks interact mediated by two delamination fronts. Experimental observations indicate that delamination fronts joining the middle crack to the lateral crack tips swap contact periodically with the crack tip of the middle crack. A model based on a variational approach analytically predicts the condition of propagation and geometrical features of three parallel cracks.

View Article and Find Full Text PDF

The recent discovery of electroactive polymers has shown great promises in the field of soft robotics and was logically followed by experimental, numerical, and theoretical developments. Most of these studies were concerned with systems entirely covered by electrodes. However, there is a growing interest for partially active polymers, in which the electrode covers only one part of the membrane.

View Article and Find Full Text PDF

Inflatable structures offer a path for light deployable structures in medicine, architecture, and aerospace. In this study, we address the challenge of programming the shape of thin sheets of high-stretching modulus cut and sealed along their edges. Internal pressure induces the inflation of the structure into a deployed shape that maximizes its volume.

View Article and Find Full Text PDF

Shape-morphing structures are at the core of future applications in aeronautics, minimally invasive surgery, tissue engineering and smart materials. However, current engineering technologies, based on inhomogeneous actuation across the thickness of slender structures, are intrinsically limited to one-directional bending. Here, we describe a strategy where mesostructured elastomer plates undergo fast, controllable and complex shape transformations under applied pressure.

View Article and Find Full Text PDF

Dielectric elastomer sheets undergo in-plane expansion when stimulated by a transverse electric field. We study experimentally how dielectric plates subjected to a non-uniform voltage distribution undergo buckling instabilities. Two different configurations involving circular plates are investigated: plates freely floating on a bath of water, and plates clamped on a frame.

View Article and Find Full Text PDF

We study the crack propagation in a thin notched sheet of a polymeric material when two points in the sheet are pulled away. For materials of isotropic fracture energy, we show that an effective tearing vector predicting the direction of fracture propagation can be defined. In the flat sheet state, this vector is the perpendicular bisector of the vectors joining the pulling points and the fracture tip.

View Article and Find Full Text PDF

We study multiple tearing of a thin, elastic, brittle sheet indented with a rigid cone. The n cracks initially prepared symmetrically propagate radially for n≥4. However, if n<4 the radial symmetry is broken and fractures spontaneously intertwine along logarithmic spiral paths, respecting order n rotational symmetry.

View Article and Find Full Text PDF

We describe the peeling of an elastomeric strip adhering to a glass plate through van der Waals interactions in the limit of a zero peeling angle. In contrast to classical studies that predict a saturation of the pulling force, in this lap test configuration the force continuously increases, while a sliding front propagates along the tape. The strip eventually detaches from the substrate when the front reaches its end.

View Article and Find Full Text PDF

Straight cracks are observed in thin coatings under residual tensile stress, resulting into the classical network pattern observed in china crockery, old paintings, or dry mud. Here, we present a novel fracture mechanism where delamination and propagation occur simultaneously, leading to the spontaneous self-replication of an initial template. Surprisingly, this mechanism is active below the standard critical tensile load for channel cracks and selects a robust interaction length scale on the order of 30 times the film thickness.

View Article and Find Full Text PDF

Compressing thin sheets usually yields the formation of singularities which focus curvature and stretching on points or lines. In particular, following the common experience of crumpled paper where a paper sheet is crushed in a paper ball, one might guess that elastic singularities should be the rule beyond some compression level. In contrast, we show here that, somewhat surprisingly, compressing a sheet between cylinders make singularities spontaneously disappear at large compression.

View Article and Find Full Text PDF

It is often postulated that quasistatic cracks propagate along the direction allowing fracture for the lowest load. Nevertheless, this statement is debated, in particular for anisotropic materials. We performed tearing experiments in anisotropic brittle thin sheets that validate this principle in the case of weak anisotropy.

View Article and Find Full Text PDF

We study the peculiar wrinkling pattern of an elastic plate stamped into a spherical mold. We show that the wavelength of the wrinkles decreases with their amplitude, but reaches a minimum when the amplitude is of the order of the thickness of the plate. The force required for compressing the wrinkled plate presents a maximum independent of the thickness.

View Article and Find Full Text PDF

We show that thin sheets under boundary confinement spontaneously generate a universal self-similar hierarchy of wrinkles. From simple geometry arguments and energy scalings, we develop a formalism based on wrinklons, the localized transition zone in the merging of two wrinkles, as building blocks of the global pattern. Contrary to the case of crumpled paper where elastic energy is focused, this transition is described as smooth in agreement with a recent numerical work [R.

View Article and Find Full Text PDF

We study the adhesion of an elastic sheet on a rigid spherical substrate. Gauss's Theorema Egregium shows that this operation necessarily generates metric distortions (i.e.

View Article and Find Full Text PDF

The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in "flexible electronics." The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination "blisters.

View Article and Find Full Text PDF

Thin adhesive films have become increasingly important in applications involving packaging, coating or for advertising. Once a film is adhered to a substrate, flaps can be detached by tearing and peeling, but they narrow and collapse in pointy shapes. Similar geometries are observed when peeling ultrathin films grown or deposited on a solid substrate, or skinning the natural protective cover of a ripe fruit.

View Article and Find Full Text PDF

Aggregation processes generally lead to broad distributions of sizes involving exponential tails. Here, experiments on the capillary-driven coalescence of regularly spaced flexible structures yields a self-similar distribution of sizes with no tail. At a given step, the physical process imposes a maximal size for the aggregates, which appears as the relevant scale for the distribution.

View Article and Find Full Text PDF

The interaction between elasticity and capillarity is used to produce three-dimensional structures through the wrapping of a liquid droplet by a planar sheet. The final encapsulated 3D shape is controlled by tailoring the initial geometry of the flat membrane. Balancing interfacial energy with elastic bending energy provides a critical length scale below which encapsulation cannot occur, which is verified experimentally.

View Article and Find Full Text PDF