Viruses are dependent on cellular energy metabolism for their replication, and the drug nitazoxanide (Alinia) was shown to interfere with both processes. Nitazoxanide is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Our hypothesis was that mitochondrial uncoupling underlies the antiviral effects of nitazoxanide.
View Article and Find Full Text PDFMicrotubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth.
View Article and Find Full Text PDFPurines are required for fundamental biological processes and alterations in their metabolism lead to severe genetic diseases associated with developmental defects whose etiology remains unclear. Here, we studied the developmental requirements for purine metabolism using the amphibian as a vertebrate model. We provide the first functional characterization of purine pathway genes and show that these genes are mainly expressed in nervous and muscular embryonic tissues.
View Article and Find Full Text PDFThe pentose phosphate pathway (PPP) is critical for anabolism and biomass production. Here we show that the essential function of PPP in yeast is the synthesis of phosphoribosyl pyrophosphate (PRPP) catalyzed by PRPP-synthetase. Using combinations of yeast mutants, we found that a mildly decreased synthesis of PRPP affects biomass production, resulting in reduced cell size, while a more severe decrease ends up affecting yeast doubling time.
View Article and Find Full Text PDFObjective: We aimed to determine the contribution of inflammasome activation in chronic low-grade systemic inflammation observed in patients with HIV (PWH) on long-term suppressive antiretroviral therapy (ART) and to explore mechanisms of such activation.
Design: Forty-two PWH on long-term suppressive ART (HIV-RNA < 40 copies/ml) were compared with 10 HIV-negative healthy controls (HC).
Methods: Inflammasome activation was measured by dosing mature interleukin (IL)-1β and IL-18 cytokines in patient serum.
We have recently identified encoding dopachrome tautomerase (DCT) as the eighth gene for oculocutaneous albinism (OCA). Patients with loss of function of suffer from eye hypopigmentation and retinal dystrophy. Here we investigate the eye phenotype in mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self-discrimination (allorecognition).
View Article and Find Full Text PDFBackground: Acute kidney injury (AKI) is an infrequent complication of inflammatory bowel disease and can be exceptionally linked to interstitial nephritis secondary to anti-inflammatory drugs, such as Pentasa® (5-ASA).
Case Presentation: We present an case of an 80-year-old man who presented chronic diarrheas treated by Pentasa®. He developed AKI, evidenced by high plasma creatinine dosed in his local laboratory.
Background: The reported association of mTOR-inhibitor (mTORi) treatment with a lower incidence of cytomegalovirus (CMV) infection in kidney transplant recipients (KTR) who are CMV seropositive (R+) remains unexplained.
Methods: The incidence of CMV infection and T-cell profile was compared between KTRs treated with mTORis and mycophenolic acid (MPA), and mTORi effects on T-cell phenotype and functions were analyzed.
Results: In KTRs who were R+ and treated with MPA, both and T cells displayed a more dysfunctional phenotype (PD-1+, CD85j+) at day 0 of transplantation in the 16 KTRs with severe CMV infection, as compared with the 17 KTRs without or with spontaneously resolving CMV infection.
Congenital erythropoietic porphyria (CEP) is an autosomal recessive disorder of the heme biosynthetic pathway that is characterized by uroporphyrinogen III synthase (UROS) deficiency and the accumulation of non-physiological isomer I porphyrins. These phototoxic metabolites predominantly produced by the erythron result in ineffective erythropoiesis, chronic hemolysis and splenomegaly, but they also disseminate in tissues causing bullous photosensitivity to UV light and skin fragility that may progress to scarring with photo mutilation. Therapeutic management is currently limited to supportive care and bone marrow transplantation is reserved for the most severe cases.
View Article and Find Full Text PDFBecause metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied.
View Article and Find Full Text PDFThe reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis.
View Article and Find Full Text PDFMetabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms.
View Article and Find Full Text PDFPurine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized , reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans.
View Article and Find Full Text PDFPurine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and simple model organisms, such as yeast, have proved valuable to provide a more comprehensive view of the metabolic consequences caused by the identified mutations.
View Article and Find Full Text PDF5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR, or acadesine) is a precursor of the monophosphate derivative 5-amino-4-imidazole carboxamide ribonucleoside 5'-phosphate (ZMP), an intermediate in purine biosynthesis. AICAR proved to have promising anti-proliferative properties, although the molecular basis of its toxicity is poorly understood. To exert cytotoxicity, AICAR needs to be metabolized, but the AICAR-derived toxic metabolite was not identified.
View Article and Find Full Text PDFAICAR (Acadesine) is a pharmacological precursor of purine nucleotide biosynthesis with anti-tumoral properties. Although recognized as an AMP mimetic activator of the protein kinase AMPK, the AICAR monophosphate derivative ZMP was also shown to mediate AMPK-independent effects. In order to unveil these AMPK-independent functions, we performed a transcriptomic analysis in AMPKα1/α2 double knockout murine embryonic cells.
View Article and Find Full Text PDFAICAR is the precursor of ZMP, a metabolite with antiproliferative properties in yeast and human. We aim at understanding how AICAR (and its active form ZMP) affects essential cellular processes. In this work, we found that ZMP accumulation is synthetic lethal with a hypomorphic allele of the ubiquitin-activating enzyme Uba1.
View Article and Find Full Text PDFPhosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway.
View Article and Find Full Text PDFTwo inorganic phosphate (Pi) uptake mechanisms operate in streptophytes and chlorophytes, the two lineages of green plants. PHOSPHATE TRANSPORTER B (PTB) proteins are hypothesized to be the Na /Pi symporters catalysing Pi uptake in chlorophytes, whereas PHOSPHATE TRANSPORTER 1 (PHT1) proteins are the H /Pi symporters that carry out Pi uptake in angiosperms. PHT1 proteins are present in all streptophyte lineages.
View Article and Find Full Text PDFIdentifying synthetic lethal interactions has emerged as a promising new therapeutic approach aimed at targeting cancer cells directly. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-amino-4-imidazole carboxamide ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to inhibit the proliferation of multiple cancer cell lines.
View Article and Find Full Text PDF5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation.
View Article and Find Full Text PDFPlants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genetic studies, the molecular mechanisms of low-Pi-signalling remain unknown. To validate the interest of chemical genetics to investigate this pathway we discovered and analysed the effects of PHOSTIN (PSN), a drug mimicking Pi-starvation in Arabidopsis.
View Article and Find Full Text PDFCells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures.
View Article and Find Full Text PDF