Imprinted genes provide an attractive paradigm to unravel links between transcription and genome architecture. The parental allele-specific expression of these essential genes - which are clustered in chromosomal domains - is mediated by parental methylation imprints at key regulatory DNA sequences. Recent chromatin conformation capture (3C)-based studies show differential organization of topologically associating domains between the parental chromosomes at imprinted domains, in embryonic stem and differentiated cells.
View Article and Find Full Text PDFThe imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis.
View Article and Find Full Text PDFHi-C is a powerful technology for exploring 3D genome organization on a genome-wide scale, yet it can be financially and computationally challenging. In a recent issue of , Wei et al. introduce HiCAR, which simplifies Hi-C by targeting the 3D interactions of accessible regions only.
View Article and Find Full Text PDFHox genes encode transcription factors that specify segmental identities along the anteroposterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, a feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive changes in histone modifications, chromatin architecture, and use of boundary elements and cis-regulatory regions.
View Article and Find Full Text PDFChromosome conformation capture techniques are a set of methods used to determine 3D genome organization through the capture and identification of physical contacts between pairs of genomic loci. Among them, 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing) allows for the identification and quantification of the sequences interacting with a preselected locus of interest. 4C-seq has been widely used in the literature, mainly to study chromatin loops between enhancers and promoters or between CTCF binding sites and to identify chromatin domain boundaries.
View Article and Find Full Text PDF: X chromosome inactivation in mammals is regulated by the non-coding (nc) RNA, Xist, which represses the chromosome from which it is transcribed. High levels of the N6-methyladenosine (m6A) RNA modification occur within Xist exon I, close to the 5' end of the transcript, and also further 3', in Xist exon VII. The m6A modification is catalysed by the METTL3/14 complex that is directed to specific targets, including Xist, by the RNA binding protein RBM15/15B.
View Article and Find Full Text PDFBackground: Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells.
View Article and Find Full Text PDFXist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models.
View Article and Find Full Text PDFIn mammals, a dosage compensation mechanism exists to equalize gene expression levels between male and female. This process is initiated by Xist RNA, a long noncoding RNA that mediates the transcriptional silencing of a complete chromosome. The kinetics of events occurring on the future inactive X-chromosome has been described in detail over the last 20 years.
View Article and Find Full Text PDFThe Polycomb-repressive complexes PRC1 and PRC2 play a key role in chromosome silencing induced by the non-coding RNA Xist. Polycomb recruitment is initiated by the PCGF3/5-PRC1 complex, which catalyzes chromosome-wide H2A lysine 119 ubiquitylation, signaling recruitment of other PRC1 complexes, and PRC2. However, the molecular mechanism for PCGF3/5-PRC1 recruitment by Xist RNA is not understood.
View Article and Find Full Text PDFSemin Cell Dev Biol
August 2016
Chromosome silencing by Xist RNA occurs in two steps; localisation in cis within the nuclear matrix to form a domain that corresponds to the territory of the inactive X chromosome elect, and transduction of silencing signals from Xist RNA to the underlying chromatin. Key factors that mediate these processes have been identified in a series of recent studies that harnessed comprehensive proteomic or genetic screening strategies. In this review we discuss these findings in light of prior knowledge both of Xist-mediated silencing and known functions/properties of the novel factors.
View Article and Find Full Text PDFX-chromosome inactivation is the process that evolved in mammals to equalize levels of X-linked gene expression in XX females relative to XY males. Silencing of a single X chromosome in female cells is mediated by the non-coding RNA Xist. Although progress has been made toward identifying factors that function in the maintenance of X inactivation, the primary silencing factors are largely undefined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
In female mammals, one of the two X chromosomes is transcriptionally silenced to equalize X-linked gene dosage relative to XY males, a process termed X chromosome inactivation. Mechanistically, this is thought to occur via directed recruitment of chromatin modifying factors by the master regulator, X-inactive specific transcript (Xist) RNA, which localizes in cis along the entire length of the chromosome. A well-studied example is the recruitment of polycomb repressive complex 2 (PRC2), for which there is evidence of a direct interaction involving the PRC2 proteins Enhancer of zeste 2 (Ezh2) and Supressor of zeste 12 (Suz12) and the A-repeat region located at the 5' end of Xist RNA.
View Article and Find Full Text PDFNucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm.
View Article and Find Full Text PDFThe elementary level of chromatin fiber, namely the nucleofilament, is known to undergo a hierarchical compaction leading to local chromatin loops, then chromatin domains and ultimately chromosome territories. These successive folding levels rely on the formation of chromatin loops ranging from few kb to some Mb. In addition to a packaging and structural role, the high-order organization of genomes functionally impacts on gene expression program.
View Article and Find Full Text PDFAlthough chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types.
View Article and Find Full Text PDFIn higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew.
View Article and Find Full Text PDF