Publications by authors named "Benoit Marrot"

The current work aims to study the biomass behaviour in a continuous mode activated sludge system (ASS) treating olive mill wastewater (OMWW) through an increasing OMWW food to microorganism ration (F/M). To this end, the biomass growth, the specific oxygen uptake rate (SOUR), microbial characterization, sludge volume index (SVI) as well as COD and phenolic compounds removal efficiencies were examined over time. Results showed a successful growth of the biomass that reached 6.

View Article and Find Full Text PDF

Influence of substrate type (synthetic (SWW) or real wastewater (RWW)) on lab scale MBR performances (e.g. COD and N-NH4(+) removal rates and bioactivities) was assessed.

View Article and Find Full Text PDF

Physico-chemical and biological parameters were monitored both throughout different oxygen cut off and starvation (OCS) times (6 h-72 h) and after the restoration of normal operational conditions. Sludge apparent viscosity and soluble extracellular polymeric substances (EPS) characteristics were measured to determine the activated sludge (AS) properties. Oxygen transfer, biological activity with specific oxygen uptake rate (SOUR) measurements during endogenous/exogenous conditions (without any external substrate/with external substrate consumption) and chemical oxygen demand (COD) removal were measured to assess the AS performances.

View Article and Find Full Text PDF

Food to microorganisms ratio (F/M) and sludge retention time (SRT) are known to affect in different ways biomass growth, bioactivities and foulants characteristics. Thus the aim of this study was to dissociate the effects of SRT from those of F/M ratio on lab-scale membrane bioreactors performances during stable and unstable state. Two acclimations were stabilized at a SRT of either 20 or 50 d with a constant F/M ratio of 0.

View Article and Find Full Text PDF

Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design.

View Article and Find Full Text PDF