Publications by authors named "Benoit Maisonneuve"

In the past decade, significant European calls for research proposals have supported translational collaborative research on non-communicable and infectious diseases within the biomedical life sciences by bringing together interdisciplinary and multinational consortia. This research has advanced our understanding of disease pathophysiology, marking considerable scientific progress. Yet, it is crucial to retrospectively evaluate these efforts' societal impact.

View Article and Find Full Text PDF

The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades.

View Article and Find Full Text PDF

In the fields of tissue engineering and regenerative medicine, many researchers and companies alike are investigating the utility of concentrated mesenchymal stem cell suspensions as therapeutic injectables, with the hope of regenerating the damaged tissue site. These cells are seldom used alone, being instead combined with synthetic biomacromolecules, such as branched poly(ethylene glycol) (PEG) polymers, in order to form cross-linked hydrogels postinjection. In this article, we present the results of a detailed experimental and analytical investigation into the impacts of a range of eight-arm PEG polymers, each presenting functional end groups, on the rheological properties of concentrated living cells of mesenchymal origin.

View Article and Find Full Text PDF

With the rapidly growing interest in the use of mesenchymal stromal cells (MSCs) for cell therapy and regenerative medicine applications, either alone as an injected suspension, or dispersed within injectable hydrogel delivery systems, greater understanding of the structure-function-property characteristics of suspensions of adhesion-dependent mesenchymal cells is required. In this paper, we present the results of an experimental study into the flow behavior of concentrated suspensions of living cells of mesenchymal origin (fibroblasts) over a wide range of cell concentrations, with and without the addition of hyaluronic acid (HA), a commonly utilized biomolecule in injectable hydrogel formulations. We characterize the change in the shear viscosity as a function of shear stress and shear rate for cell volume fractions varying from 20 to 60%.

View Article and Find Full Text PDF