Grade IV multiforme glioblastoma (GBM) is an aggressive cancer that remains incurable due to the GBM cells invading and proliferating in the surrounding healthy tissues, even after tumor resection. A new therapeutic paradigm to treat GBM is to attract and accumulate GBM cells in a macroporous hydrogel inserted in the surgical cavity after tumor resection, followed by a targeted high dose of radiotherapy. This work presents a molding-based method to prepare macroporous hydrogels composed of sodium alginate and chitosan, homogeneously mixed in solution using sodium bicarbonate, and subsequently crosslinked with genipin and calcium chloride.
View Article and Find Full Text PDFEnsuring good definition of scaffolds used for 3D cell culture is a prominent challenge that hampers the development of tissue engineering platforms. Since dextran repels cell adhesion, using dextran-based materials biofunctionalized through a bottom-up approach allows for precise control over material definition. Here, we report the design of dextran hydrogels displaying a fully interconnected macropore network for the culture of vascular spheroids .
View Article and Find Full Text PDFGlioblastoma (GBM) accounts for half of all central nervous system tumors. Once the tumor is removed, many GBM cells remain present near the surgical cavity and infiltrate the brain up to a distance of 20-30 mm, resulting in recurrence a few months later. GBM remains incurable due to the limited efficiency of current treatments, a result of the blood-brain barrier and sensitivity of healthy brain tissues to chemotherapy and radiation.
View Article and Find Full Text PDFWe compared different biofunctionalization strategies for immobilizing trastuzumab, an IgG targeting the HER2 biomarker, onto 100 nm spherical gold nanoparticles because of the E/K coiled-coil peptide heterodimer. First, Kcoil peptides were grafted onto the gold surface while their Ecoil partners were genetically encoded at the C-terminus of trastuzumab's Fc region, allowing for a strong and specific interaction between the antibodies and the nanoparticles. Gold nanoparticles with no Kcoil peptides on their surface were also produced to immobilize Ecoil-tagged trastuzumab antibodies via the specific adsorption of their negatively charged Ecoil tags on the positively charged gold surface.
View Article and Find Full Text PDFMany biomedical and biosensing applications require functionalization of surfaces with proteins. To this end, the E/K coiled-coil peptide heterodimeric system has been shown to be advantageous. First, Kcoil peptides are covalently grafted onto a given surface.
View Article and Find Full Text PDFIntroduction: Glass coverslips are used as a substrate since Harrison's initial nerve cell culture experiments in 1910. In 1974, the first study of brain cells seeded onto polylysine (PL) coated substrate was published. Usually, neurons adhere quickly to PL coating.
View Article and Find Full Text PDFMacroporous hydrogels possess a vast potential for various applications in the biomedical field. However, due to their large pore size allowing for unrestricted diffusion in the macropore network, macroporous hydrogels alone are not able to efficiently capture and release biomolecules in a controlled manner. There is thus a need for biofunctionalized, affinity-based gels that can efficiently load and release biomolecules in a sustained and controlled manner.
View Article and Find Full Text PDFGlioblastoma multiforme is a type of brain cancer associated with a very low survival rate since a large number of cancer cells remain infiltrated in the brain despite the treatments currently available. This work presents a macroporous hydrogel trap, destined to be implanted in the surgical cavity following tumor resection and designed to attract and retain cancer cells, in order to eliminate them afterward with a lethal dose of stereotactic radiotherapy. The biocompatible hydrogel formulation comprises sodium alginate (SA) and chitosan (CHI) bearing complementary electrostatic charges and stabilizing the gels in saline and cell culture media, as compared to pristine SA gels.
View Article and Find Full Text PDFTo overcome the radioresistance of glioblastoma (GBM) cells infiltrated in the brain, we propose to attract these cancer cells into a trap to which a lethal radiation dose can be delivered safely. Herein, we have prepared and characterized a sodium alginate-based macroporous hydrogel as a potential cancer cell trap. Microcomputed X-ray tomography shows that the hydrogel matrices comprise interconnected pores with an average diameter of 300 μm.
View Article and Find Full Text PDFSurface plasmon resonance-based biosensors have been extensively applied to the characterization of the binding kinetics between purified (bio)molecules, thanks to robust data analysis techniques. However, data analysis for solutions containing multiple interactants is still at its infancy. We here present two algorithms for (1) the reliable and accurate determination of the kinetic parameters of N interactants present at different ratios in N mixtures and (2) the estimation of the ratios of each interactant in a given mixture, assuming that their kinetic parameters are known.
View Article and Find Full Text PDFWe used the Surface Forces Apparatus to elucidate the interaction mechanism between grafted 5 heptad-long peptides engineered to spontaneously form a heterodimeric coiled-coil complex. The results demonstrated that when intimate contact between peptides is reached, binding occurs first via weakly interacting but more mobile distal heptads, suggesting an induced-fit association process. Precise control of the distance between peptide-coated surfaces allowed to quantitatively monitor the evolution of their biding energy.
View Article and Find Full Text PDFAffinity-based systems represent a promising solution to control the delivery of therapeutics using hydrogels. Here, we report a hybrid system that is based on the peptidic E/K coiled coil affinity pair to mediate the release of gold nanoparticles (NPs) from alginate scaffolds. On one hand, the gold NPs were functionalized with the Ecoil-tagged epidermal growth factor (EGF).
View Article and Find Full Text PDFThiol(-click) chemistry has been extensively investigated to conjugate (bio)molecules to polymers. Handling of cysteine-containing molecules may however be cumbersome, especially in the case of fast-oxidizing coiled-coil-forming peptides. In the present study, we investigated the practicality of a one-pot process to concomitantly reduce and conjugate an oxidized peptide to a polymer.
View Article and Find Full Text PDFDextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion.
View Article and Find Full Text PDFUnlabelled: In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin.
View Article and Find Full Text PDFThe patency of small-diameter (<6 mm) synthetic vascular grafts (VGs) is still limited by the absence of a confluent, blood flow-resistant monolayer of endothelial cells (ECs) on the lumen and of vascular smooth muscle cell (VSMC) growth into the media layer. In this research, electrospinning has been combined with bioactive coatings based on chondroitin sulfate (CS) to create scaffolds that possess optimal morphological and bioactive properties for subsequent cell seeding. We fabricated random and aligned electrospun poly(ethylene terephthalate), ePET, mats with small pores (3.
View Article and Find Full Text PDFIn an effort to design biomaterials that may promote repair of the central nervous system, 3-dimensional scaffolds made of electrospun poly lactic acid nanofibers with interconnected pores were fabricated. These scaffolds were functionalized with polyallylamine to introduce amine groups by wet chemistry. Experimental conditions of the amination protocol were thoroughly studied and selected to introduce a high amount of amine group while preserving the mechanical and structural properties of the scaffold.
View Article and Find Full Text PDFUnlabelled: Growth factors (GFs) are potent signaling molecules that act in a coordinated manner in physiological processes such as tissue healing or angiogenesis. Co-immobilizing GFs on materials while preserving their bioactivity still represents a major challenge in the field of tissue regeneration and bioactive implants. In this study, we explore the potential of an oriented immobilization technique based on two high affinity peptides, namely the Ecoil and Kcoil, to allow for the simultaneous capture of the epidermal growth factor (EGF) and the vascular endothelial growth factor (VEGF) on a chondroitin sulfate coating.
View Article and Find Full Text PDFCovalent immobilization of biomolecules, such as proteins, on conducting polymer films is critical to organic bioelectronics to create tailored interfaces with biological systems. In this study, we propose a simple approach to graft proteins on films of the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). PEDOT:PSS is a biocompatible and easy to process conducting polymer, widely used in bioelectronics.
View Article and Find Full Text PDFThis study highlights the advantages of chondroitin sulfate (CS) as a sublayer combining selective low-fouling properties, low-platelet adhesion and pro-adhesive properties on endothelial cells, making CS promising for vascular graft applications. These properties were evaluated by comparing CS with well-known low-fouling coatings such as poly(ethylene glycol) (PEG) and carboxymethylated dextran (CMD), which were covalently grafted on primary amine-rich plasma polymerized (LP) films. Protein adsorption studies by quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence measurements showed that CS is as effective as PEG in reducing fibrinogen adsorption (~90% reduction).
View Article and Find Full Text PDFIn a "sandwich" enzyme-linked immunosorbent assay (ELISA) designed to detect an antigen in a complex protein mixture, the antigen is usually captured via an antibody adsorbed to the wells of a microplate. Plate preparation for standard assay involves a passive adsorption of capture antibodies followed by the incubation of blocking agents. Here, we describe a new strategy that replaces these two time-consuming adsorption steps (up to 15 h) by a unique step corresponding to the covalent grafting of the capture antibody on a carboxymethylated dextran (CMD) layer, a single step completed in 15 min.
View Article and Find Full Text PDFAn anti-apoptotic coating combining chondroitin sulfate (CS) and coiled-coil-based tethering of epidermal growth factor (EGF) is designed for vascular applications. The oriented tethering strategy enables to reach higher EGF surface densities compared to the commonly used random covalent grafting, while using much lower concentrations of EGF during incubation. It also significantly improves vascular smooth muscle cell (VSMC) survival and resistance to apoptosis in serum-free conditions.
View Article and Find Full Text PDFThis study examines the effect of electrospun polyethylene terephthalate mats fiber diameter, orientation, and surface properties on the Human Aortic Endothelial Cell behavior. Mats with two different average fiber diameters (740 +/- 200 nm and 1.8 +/- 0.
View Article and Find Full Text PDFChimeric growth factors may represent a powerful alternative to their natural counterparts for the functionalization of tissue-engineered scaffolds and applications in regenerative medicine. Their rational design should provide a simple, readily scalable production strategy while improving retention at the site of action. In that endeavor, we here report the synthesis of a chimeric protein corresponding to human vascular endothelial growth factor 165 being N-terminally fused to an E5 peptide tag (E5-VEGF).
View Article and Find Full Text PDF