In this study, we evaluated, by electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using a quadrupole orthogonal time-of-flight (QqToF)-MS/MS hybrid instrument, the gas-phase fragmentations of some commercially available biotinyl reagents. The biotin reagents used were: psoralen-BPE 1, p-diazobenzoyl biocytin (DBB) 2, photoreactive biotin 3, biotinyl-hexaethyleneglycol dimer 4, and the sulfo-SBED 5. The results showed that, during ESI-MS and CID-MS/MS analyses, the biotin reagents followed a similar gas-phase fragmentation pattern and the cleavages usually occurred at either end of the spacer arm of the biotin reagents.
View Article and Find Full Text PDFThe fragmentation patterns of a series of six novel synthesized benzopyranopyrimidine derivatives 1-6, possessing the same 2-oxo-2H-benzopyrano[2,3-d]pyrimidine backbone structure, were investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) techniques using a quadrupole orthogonal time-of-flight (QqToF)-hybrid instrument. The series of six pure benzopyranopyrimidine compounds contained three constitutional isobaric isomers (compounds 4-6). A simple methodology, based on the use of ESI (positive ion mode) and increasing the declustering potential in the atmospheric pressure/vacuum interface resulting in collision-induced dissociation (CID), was used to enhance the formation of the product ions.
View Article and Find Full Text PDF