Publications by authors named "Benoit Darquie"

We report room temperature heterodyne detection of a quantum cascade laser beaten with a local oscillator on a unipolar quantum photodetector in two different atmospheric windows, at 4.8 µm and 9 µm. A noise equivalent power of few pW is measured by employing an active stabilization technique in which the local oscillator and the signal are locked in phase.

View Article and Find Full Text PDF

Miniaturizing and integrating atomic vapor cells is widely investigated for the purposes of fundamental measurements and technological applications such as quantum sensing. Extending such platforms to the realm of molecular physics is a fascinating prospect that paves the way for compact frequency metrology as well as for exploring light-matter interactions with complex quantum objects. Here, we perform molecular rovibrational spectroscopy in a thin-cell of micrometric thickness, comparable to excitation wavelengths.

View Article and Find Full Text PDF

We present a theory-experiment investigation of the helically chiral compounds Ru(acac) and Os(acac) as candidates for next-generation experiments for detection of molecular parity violation (PV) in vibrational spectra. We used relativistic density functional theory calculations to identify optimal vibrational modes with expected PV effects exceeding by up to 2 orders of magnitude the projected instrumental sensitivity of the ultrahigh resolution experiment under construction at the Laboratoire de Physique des Lasers in Paris. Preliminary measurements of the vibrational spectrum of Ru(acac) carried out as the first steps toward the planned experiment are presented.

View Article and Find Full Text PDF

Chiral transition-metal complexes are of interest in many fields ranging from asymmetric catalysis and molecular materials science to optoelectronic applications or fundamental physics including parity violation effects. We present here a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium(III)-tris-(acetylacetonato) complex, Ru(acac). Enantiomerically pure Δ- or Λ-Ru(acac), characterized by electronic circular dichroism (ECD), were vaporized and adiabatically expanded to produce a supersonic beam and photoionized by circularly-polarized VUV light from the DESIRS beamline at Synchrotron SOLEIL.

View Article and Find Full Text PDF

The first enantiopure chiral-at-rhenium complexes of the form fac-ReX(CO) (:C^N) have been prepared, where :C^N is a helicene-N-heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit.

View Article and Find Full Text PDF

In our effort towards measuring the parity violation energy difference between two enantiomers, a simple chiral oxorhenium complex 5 bearing enantiopure 2-mercaptocyclohexan-1-ol has been prepared as a potential candidate species. Vibrational circular dichroism revealed a chiral environment surrounding the rhenium atom, even though the rhenium is not a stereogenic center itself, and enabled to assign the (1S,2S)-(-) and (1R,2R)-(+) absolute configuration for 5. For both compound 5 and complex 4, previously studied by us and bearing a propane-2-olato-3-thiolato ligand, relativistic calculations predict parity violating vibrational frequency differences of a few hundreds of millihertz, above the expected sensitivity attainable by a molecular beam Ramsey interferometer that we are constructing.

View Article and Find Full Text PDF

Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CHReO and CHReO isotopologues in the gas phase with unprecedented precision.

View Article and Find Full Text PDF

With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching.

View Article and Find Full Text PDF

Originating from the weak interaction, parity violation in chiral molecules has been considered as a possible origin of biohomochirality. We have proposed the observation of molecular parity violation using the two-photon Ramsey fringes technique on a supersonic beam. As a first step in this direction, a detailed spectroscopic study of methyltrioxorhenium (MTO) has been undertaken.

View Article and Find Full Text PDF

Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take up this challenge, a consortium of physicists, chemists, theoreticians, and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goal, the progress accomplished in the diverse areas, and point out directions for future PV observations.

View Article and Find Full Text PDF