Publications by authors named "Benoit D L Campeon"

There is a crucial need for low-cost energy storage technology based on abundant sodium ions to realize sustainable development with renewable energy resources. Poly(vinylidene fluoride) (PVDF) is applied as a binder in sodium-ion batteries (SIBs). Nevertheless, PVDF is also known to suffer from a larger irreversible capacity, especially when PVDF is used as the binder of negative electrode materials.

View Article and Find Full Text PDF

All-solid-state-batteries (ASSBs) necessitate the preparation of a solid electrolyte and an electrode couple with individually dense and compact structures with superior interfacial contact to minimize overall cell resistance. A conventional preparation method of solid polymer electrolyte (SPE) with polyethylene-oxide (PEO) generally consists in employing uni-axial hot press (HP) to densify SPE. However, while uni-axial press with moderate pressure effectively densifies PEO with Li salts, excessive pressure also unavoidably results in perpendicular elongation and deformation for polymer matrix.

View Article and Find Full Text PDF

The addition of two-dimensional (2D) materials into polymers can improve their mechanical properties. In particular, graphene oxide (GO) and hexagonal boron nitride (h-BN) are expected to be potential nanoplatelet additives for polymers. Interactions between such nanoplatelets and polymers are effective in improving the above properties.

View Article and Find Full Text PDF

Carbon materials with controlled pore sizes at the nanometer level have been obtained by template methods, chemical vapor desorption, and extraction of metals from carbides. However, to produce porous carbons with controlled pore sizes at the Ångstrom-level, syntheses that are simple, versatile, and reproducible are desired. Here, we report a synthetic method to prepare porous carbon materials with pore sizes that can be precisely controlled at the Ångstrom-level.

View Article and Find Full Text PDF

This study examines the synthesis and electrochemical performance of three-dimensional graphene for Li-ion batteries and Na-ion batteries. The in situ formation of iron hydroxide nanoparticles (Fe(OH)x NPs) of various weights on the surface of graphene oxide, followed by thermal treatment at elevated temperature and washing using hydrochloric acid, furnished 3D graphene. The characterization studies confirmed the prevention of graphene layer stacking by over 90% compared with thermal treatment without Fe(OH)x.

View Article and Find Full Text PDF