Two-photon voltage imaging has long been heralded as a transformative approach capable of answering many long-standing questions in modern neuroscience. However, exploiting its full potential requires the development of novel imaging approaches well suited to the photophysical properties of genetically encoded voltage indicators. We demonstrate that parallel excitation approaches developed for scanless two-photon photostimulation enable high-SNR two-photon voltage imaging.
View Article and Find Full Text PDFTwo-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables the generation of precise spatiotemporal neuronal activity patterns and thus a broad range of experimental applications, such as high throughput connectivity mapping and probing neural codes for perception. Yet, current holographic approaches limit the resolution for tuning the relative spiking time of distinct cells to a few milliseconds, and the achievable number of targets to 100-200, depending on the working depth. To overcome these limitations and expand the capabilities of single-cell optogenetics, we introduce an ultra-fast sequential light targeting (FLiT) optical configuration based on the rapid switching of a temporally focused beam between holograms at kHz rates.
View Article and Find Full Text PDFThe electric excitability of muscle, heart, and brain tissue relies on the precise interplay of Na- and K-selective ion channels. The involved ion fluxes are controlled in optogenetic studies using light-gated channelrhodopsins (ChRs). While non-selective cation-conducting ChRs are well established for excitation, K-selective ChRs (KCRs) for efficient inhibition have only recently come into reach.
View Article and Find Full Text PDFIn recent decades, optogenetics has been transforming neuroscience research, enabling neuroscientists to drive and read neural circuits. The recent development in illumination approaches combined with two-photon (2P) excitation, either sequential or parallel, has opened the route for brain circuit manipulation with single-cell resolution and millisecond temporal precision. Yet, the high excitation power required for multi-target photostimulation, especially under 2P illumination, raises questions about the induced local heating inside samples.
View Article and Find Full Text PDFComputer-generated holography enables efficient light pattern generation through phase-only wavefront modulation. While perfect patterning usually requires control over both phase and amplitude, iterative Fourier transform algorithms (IFTA) can achieve phase-only approximations which maximize light efficiency at the cost of uniformity. The phase being unconstrained in the output plane, it can vary abruptly in some regions leading to destructive interferences.
View Article and Find Full Text PDFMed Sci (Paris)
November 2011
Light-sheet based fluorescence microscopy (LSM) is an optical technique that becomes more and more popular for multi-view imaging of in vivo sample in its physiological environment. LSM combines the advantages of the direct optical sectioning to the ones of optical tomography by angular scanning. In fact, a thin light-sheet illuminates laterally a section of the sample, thus limiting the effects of photobleaching and phototoxicity only to the plane of interest.
View Article and Find Full Text PDF